【简介:】本篇文章给大家谈谈《螺旋桨飞机最大起飞重量》对应的知识点,希望对各位有所帮助。本文目录一览:
1、最大的飞机螺旋桨有多大?
2、螺旋桨飞机中,螺旋桨的转速和螺旋桨的大小哪
本篇文章给大家谈谈《螺旋桨飞机最大起飞重量》对应的知识点,希望对各位有所帮助。
本文目录一览:
最大的飞机螺旋桨有多大?
曾经使用过的最大的飞机螺旋桨是格鲁达(Cam)螺旋桨,其直径为6.9米。它安装在一架波兰的弗茨瓦夫造的林克-霍夫曼(Linke-Hofinann)RⅡ型飞机上。该机于1919年首次试飞。这个螺旋桨由4台260马力(194千瓦)的梅塞德斯发动机驱动,其转速为545转/分。
螺旋桨飞机中,螺旋桨的转速和螺旋桨的大小哪个对螺旋桨产生的前进力影响更大?
螺旋桨的大小
螺旋桨的转速一般不会太高,受桨叶的材料所限,
如直升机才300-500转,固定翼的也高不了多少
飞机螺旋桨在发动机驱动下高速旋转,从而产生拉力,牵拉飞机向前飞行。这是人们的常识。可是,有人认为螺旋桨的拉力是由于螺旋桨旋转时桨叶把前面的空气吸入并向后排,用气流的反作用力拉动飞机向前飞行的,这种认识是不对的。
那么,飞机的螺旋桨是怎样产生拉力的呢?如果大家仔细观察,会看到飞机的螺旋桨结构很特殊,单支桨叶为细长而又带有扭角的翼形叶片,桨叶的扭角(桨叶角)相当于飞机机翼的迎角,但桨叶角为桨尖与旋转平面呈平行逐步向桨根变化的扭角。
桨叶的剖面形状与机翼的剖面形状很相似,前桨面相当于机翼的上翼面,曲率较大,后桨面则相当于下翼面,曲率近乎平直,每支桨叶的前缘与发动机输出轴旋转方向一致,所以,飞机螺旋桨相当于一对竖直安装的机翼。
桨叶在高速旋转时,同时产生两个力,一个是牵拉桨叶向前的空气动力,一个是由桨叶扭角向后推动空气产生的反作用力。
从桨叶剖面图中可以看出桨叶的空气动力是如何产生的,由于前桨面与后桨面的曲率不一样,在桨叶旋转时,气流对曲率大的前桨面压力小,而对曲线近于平直的后桨面压力大,因此形成了前后桨面的压力差,从而产生一个向前拉桨叶的空气动力,这个力就是牵拉飞机向前飞行的动力。
另一个牵拉飞机的力,是由桨叶扭角向后推空气时产生的反作用力而得来的。桨叶与发动机轴呈直角安装,并有扭角,在桨叶旋转时靠桨叶扭角把前方的空气吸入,并给吸入的空气加一个向后推的力。与此同时,气流也给桨叶一个反作用力,这个反作用力也是牵拉飞机向前飞行的动力。
由桨叶异型曲面产生的空气动力与桨叶扭角向后推空气产生的反作用力是同时发生的,这两个力的合力就是牵拉飞机向前飞行的总空气动力。
现在的战机飞行员一般都能承受最大几个G?
一名优秀的战斗机飞行员一般都可以承受高达9个G的过载。
“G”:地球表面的重力加速度;飞行器加上载重和驾驶员之重量,且飞行器处于平飞时,这种状态定义为“1G”。而当飞行器改变惯性,如加减速或是进行非直线动作时即会产生正或负的重力(G)。
当飞行器加速或攀升,而导致重力由上往下,或进行非直线的动作的离心力,就会产生正G力,产生G力与地面位置无直接关系而与飞行器原有位置及方向有关,例如飞行器上下颠倒并往地面接近时,即使地面是在下方亦会产生正G力。
相对的当飞行器减速或下降而使重力由下往上时,就会产生负G力,此时的上下亦与地面位置无直接关系。
扩展资料
其实在生活中随时都会产生额外G力,但是多半因为过于微小因此往往被忽略,若要明显体验则可利用高速的器材或交通工具,例如云霄飞车或民航机,但此类方式所产生的G力仍旧在一般人体的可承受范围之内,而对于随时在进行超高速动作飞行器上的飞行员而言,G力却是不可忽视的一个重要关键,且往往决定生死。
首先是飞行器的组件,包括蒙皮及刚性结构、接合点…皆有可能因为高或长期的G力之影响,而产生材质疲劳或劣化,极有可能会造成损坏而导致严重后果,甚至是支撑不住而空中解体。
一般而言,正常状态下的人体所能承受的最大极限为正9G到负3G之间,而当正G力越大时,血液会因压力而从头部流向腿部而使脑部血液量锐减,此时二氧化碳浓度会急遽增加,并因缺血缺氧而影响视觉器官造成所谓的“黑视症”(Blackout)。
反之,当负G力过大时,身体的血液会反向的由下往脑部集中,造成脑部充血危及微血管,同时眼球也因过度充血而使得进入的光线都呈现血液色,称为“红视症”(Redout)。
一般来说,短暂的“红视症”与“黑视症”只是人体自我保护机制产生的警讯,用以警告人体已经濒临极限,倘若继续维持甚至增加G力,脑部将再因保护机制而导致昏厥,此时位于空中的飞行器即有极度危险。
接着,当G力超过人脑所能负荷极限时,则人脑将因长时间过度缺氧或充血的血管破裂而造成永久性伤害,最严重的即是因脑部严重损坏而死亡,或是脆弱的内部组织因持续遭受高G力而产生破裂,造成严重出血并危及生命。
关于《螺旋桨飞机最大起飞重量》的介绍到此就结束了。