【简介:】本篇文章给大家谈谈《航空数据分析》对应的知识点,希望对各位有所帮助。本文目录一览:
1、简述战争中的航空技术发展与应用
2、航空物探数据特性
3、遥感飞机
4、哈密土
本篇文章给大家谈谈《航空数据分析》对应的知识点,希望对各位有所帮助。
本文目录一览:
简述战争中的航空技术发展与应用
航空大数据技术总体架构同其他传统大数据技术架构相似,但在具体应用过程中有所区别,行业特征较为明显。
在数据采集模块中,数据采集阶段关心的是数据获取,航空数据复杂,既包含传统行业的结构化数据,也包含互联网用户、卫星和无线电传输数据、机载传感器数据以及人工采集的半结构化或非结构化数据。
扩展资料:
注意事项:
优化航空服务有利于提高中国民航的收益水平,为中国民航的发展提高持续的物质支持。随着社会经济的发展,人们的生活水平大幅度提高,温饱问题得到了基本解决,更多的人开始追求物质和精神享受。在选择出行方式时,除了关注出行安全和出行速度之外,也有很多人开始要求高服务质量。
尤其是在选择航空这样的出行方式时,人们更加关注工作人员的服务质量和航空企业的服务质量,良好和优秀的服务能够让顾客对航空公司产生好感,航空企业的服务就能够换来更多的收益;相反,水平较低的服务会使顾客产生反感,航空企业所能够获得的利益也会随之减少,不利于航空企业的持续发展。
参考资料来源:人民网-百年战史:技术与装备如何改变战争形态
参考资料来源:人民网-战略前沿技术将重塑未来战争形态
航空物探数据特性
通过数据源需求调研和分析,深刻地认识到航空物探测量所获得的地球物理数据所具有的空间性,多源性、多尺度、海量、有序等特点,这是正确地进行航空物探数据库结构设计和信息系统软件架构设计的基础。
一、空间性
航空物探测量是将各种测量仪器及其配套的辅助设备装载在飞行器上,在测量地区上空按照预先设定的测线和高度对地球磁场、重力场等进行测量;即航空物探测量是以飞行器为载体,通过各种探测装置对地球物理场进行探测及数据分析,揭示地质构造和相关矿产油气资源信息。因此,航空物探数据与空间位置(经纬度和高度)是密切相关的,具有较强的空间性。它们既可以采用基于空间信息技术进行管理,同时又可以利用空间分析的手段揭示场源信息与地理分布之间的关系。
航空物探数据的空间特性表现为多种地球物理场对应着同一地理位置,即同一个地理信息单元其几何特征是一致的,却对应着多种语义。既有地理位置、海拔高度等自然地理特征,也有地球重力场、磁场等多种地球物理场信息。这些不同特征的地球物理场信息,对于地质问题的综合解释是具有重要的意义,因此也将这种多语义性称之为多维性。
二、多源性
将航空物探资料数据分为6类,每类数据的直接来源各不相同。资料概况数据是源于航空物探项目,是反映资料质量和项目有关信息的数据;基础数据来源航空物探测量,坐标数据来源于导航定位系统等。基础数据经数据转换处理,地质分析和推断解释,形成了数据性质完全不同的转换数据、异常数据、解释评价数据,以及图件和文字报告。因此,航空物探数据具有多源性特点,此特点决定了航空物探数据格式的多样性(表1-1),如剖面数据(.GDB,.APA,.APB,.XYZ等)、网格数据(.AGA,.AGB,.GRD,.GDL等),与GIS有关的解释数据和评价数据为矢量格式(MapGIS为.WT,.WL,.WP,ArcGIS为.SHP等),图像数据(.BMP,.JPG,.TIFF等),文字数据(.DOC,.PDF)等。
表1-1 航空物探数据的主要数据格式
续表
三、多尺度
航空物探勘查的目的任务决定测量比例尺。例如,航磁概查的区域跨度一般都比较大,在几百千米,最大可达1000km以上,一般采用1:100万或1:50万的小比例尺测量。航磁普查的区域跨度要小一些,一般不超过500km,采用1:25万、1:20万或1:10万的中比例尺测量。详查区域跨度最小,不超过200km,一般100km以内,最短测线长度可达5km,采用1:5万、1:2.5万或1:1万的大比例尺测量。
测量比例尺的差异是不同尺度的航空物探测量的反映,不同尺度的航空物探测量不仅对测量技术和数据处理技术要求不同,对成果图件展示要求也不同,不同尺度的航空物探成果图件使用不同成图的投影坐标。国家对从1:100万到1:1万的国家基本比例尺图件的投影坐标有明确规定,例如1:100万标准分幅的基础图件采用兰勃特等角圆锥投影,1:50万至1:5万采用高斯克吕格6°分带投影,1:2.5万至1:1万高斯克吕格3°分带投影。航空物探最终的成果图件均遵从此规定。因此,本信息系统需要解决不同投影坐标的航空物探成果图件管理问题。
四、海量性
航遥中心自20世纪50年代开展航空物探工作以来,已经完成1200万测线千米的航空物探测量,覆盖我国陆地面积930×104km2,海域面积210×104km2。中心现有的测量数据中均包含航磁测量数据。较早的航磁测量数据采样率为2次/s,采样点间距约30m。目前,航磁测量数据采样率为10次/s,采样点间距约6m。估计航磁测量数据达到10亿个测点以上。
目前,航空磁力测量已发展为航磁全轴梯度测量,数据采样率为10次/s,采集4道磁总场数据,计算出3个方向磁梯度数据。因此,同样开展1km航空物探测量,现在所采集数据量是以前的5~10倍。随着航空物探技术的发展,数据采样率的不断提高,航空物探测量采集的数据量成几何级数增长。可以预见,我国海域和陆地的航空物探数据量可达到TB数量级。
五、有序性
有序性是航空物探数据沿着测线的测量方向有序排列的现象,是航空物探测量过程中人为赋予的一个非常重要的特性(类似珍珠项链的线)。如果打乱了这种有序性,就破坏了航空物探数据沿测线方向的变化规律性,增加数字成图、地质解释,以及数据管理等工作的难度(需重新排序,恢复数据的有序性)。
六、不同的数据采样频率
地球上任意一点(地理位置)都有磁场、重力场等信息,受地球物理场探测器的技术限制,在航空物探综合测量过程中现在还做不到所有测量参数同步采样。目前航空物探测量各参数采样率分别为:坐标数据和高度数据2次/s,磁场数据10次/s,重力场数据1次/s。这种测量数据采样频率不同步现象对航空物探数据库结构产生深远的影响。
七、唯一性和树形结构
航空物探资料来源于航空物探勘查项目,项目资料应具有唯一性。这是资料信息化管理最基本要求。
在项目研究过程中,常根据研究工作的需要,将项目分解为课题,课题再分解子课题、专题等。为了便于信息化管理,本信息系统将项目、课题、子课题、专题等统称为项目,并赋予级次属性,它们分别对应一级项目、二级项目、三级项目、四级项目等,共同构成项目树。一级项目为树根,其他级别的项目为树干或树叶。因此,隶属于不同级次的项目资料也具有可组织成树形结构特点。
遥感飞机
遥感(RS)简介
遥感是以航空摄影技术为基础,在本世纪60年代初发展起来的一门新兴技术。开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,标志着航天遥感时代的开始。经过几十年的发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。
遥感是利用遥感器从空中来探测地面物体性质的,它根据不同物体对波谱产生不同响应的原理,识别地面上各类地物,具有遥远感知事物的意思。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。
(一)遥感技术主要特点
1.可获取大范围数据资料。遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。例如,一张陆地卫星图像,其覆盖面积可达3万多km2。这种展示宏观景象的图像,对地球资源和环境分析极为重要。
2.获取信息的速度快,周期短。由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图像。Meteosat每30分钟获得同一地区的图像。
3.获取信息受条件限制少。在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。
4.获取信息的手段多,信息量大。根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层、水的下层,冰层下的水体,沙漠下面的地物特性等,微波波段还可以全天候的工作。
遥感技术所获取信息量极大,其处理手段是人力难以胜任的。例如Landsat卫星的TM图像,一幅覆盖185km×185km地面面积,象元空间分辨率为30m,象元光谱分辨率为28位的图,其数据量约为6000×6000=36Mb。若将6个波段全部送入计算机,其数据量为:
36Mb×6=216Mb
为了提高对这样庞大数据的处理速度,遥感数字图像技术随之得以迅速发展。
目前,遥感技术已广泛应用于农业、林业、地质、海洋、气象、水文、军事、环保等领域。在未来的十年中,预计遥感技术将步入一个能快速,及时提供多种对地观测数据的新阶段。遥感图像的空间分辨率,光谱分辨率和时间分辨率都会有极大的提高。其应用领域随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,将会越来越广泛。
遥感(Remote Sensing),从广义上说是泛指从远处探测、感知物体或事物的技术。即不直接接触物体本身,从远处通过仪器(传感器)探测和接收来自目标物体的信息(如电场、磁场、电磁波、地震波等信息),经过信息的传输及其处理分析,识别物体的属性及其分布等特征的技术。
通常遥感是指空对地的遥感,即从远离地面的不同工作平台上(如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船、航天飞机等)通过传感器,对地球表面的电磁波(辐射)信息进行探测,并经信息的传输、处理和判读分析,对地球的资源与环境进行探测和监测的综合性技术。
当前遥感形成了一个从地面到空中,乃至空间,从信息数据收集、处理到判读分析和应用,对全球进行探测和监测的多层次、多视角、多领域的观测体系,成为获取地球资源与环境信息的重要手段。
遥感在地理学中的应用,进一步推动和促进了地理学的研究和发展,使地理学进入到一个新的发展阶段。
遥感信息应用是遥感的最终目的。遥感应用则应根据专业目标的需要,选择适宜的遥感信息及其工作方法进行,以取得较好的社会效益和经济效益。
遥感技术系统是个完整的统一体。它是建筑在空间技术、电子技术、计算机技术以及生物学、地学等现代科学技术的基础上的,是完成遥感过程的有力技术保证。
(二)遥感的原理与实践
--以上海市第三轮航空遥感调查为例
在人类即将告别20世纪,并迈步跨入21世纪之际,上海市人民政府要求: 对20世纪末的上海城市发展状况,作一次全面的航空遥感调查,这是继1988年和1994年前两轮航空遥感调查之后的上海市第三轮航空遥感调查。本次航空遥感调查的目的是:运用现代信息技术手段,将20世纪末的上海城市发展状况,以数字化的形式真实、详细地记录下来,建立相应的遥感影像资料数据库,并对这些数据充分加以分析和利用,以便为未来的上海城市发展提供信息服务和决策参考。
一、遥感的基本原理
(一)基本概念
遥感一词来源于英语“Remote Sensing”,其直译为“遥远的感知”,时间长了人们将它简译为遥感。遥感是20世纪60年代发展起来的一门对地观测综合性技术。自20世纪80年代以来,遥感技术得到了长足的发展,遥感技术的应用也日趋广泛。随着遥感技术的不断进步和遥感技术应用的不断深入,未来的遥感技术将在我国国民经济建设中发挥越来越重要的作用。 关于遥感的科学含义通常有广义和狭义两种解释: 广义的解释: 一切与目标物不接触的远距离探测。 狭义的解释: 运用现代光学、电子学探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析、解译揭示出目标物本身的特征、性质及其变化规律。
(二)系统的组成
遥感是一门对地观测综合性技术,它的实现既需要一整套的技术装备,又需要多种学科的参与和配合,因此实施遥感是一项复杂的系统工程。根据遥感的定义,遥感系统主要由以下四大部分组成:
1、信息源 信息源是遥感需要对其进行探测的目标物。任何目标物都具有反射、吸收、透射及辐射电磁波的特性,当目标物与电磁波发生相互作用时会形成目标物的电磁波特性,这就为遥感探测提供了获取信息的依据。
2、信息获取 信息获取是指运用遥感技术装备接受、记录目标物电磁波特性的探测过程。信息获取所采用的遥感技术装备主要包括遥感平台和传感器。其中遥感平台是用来搭载传感器的运载工具,常用的有气球、飞机和人造卫星等; 传感器是用来探测目标物电磁波特性的仪器设备,常用的有照相机、扫描仪和成像雷达等。
3、信息处理 信息处理是指运用光学仪器和计算机设备对所获取的遥感信息进行校正、分析和解译处理的技术过程。信息处理的作用是通过对遥感信息的校正、分析和解译处理,掌握或清除遥感原始信息的误差,梳理、归纳出被探测目标物的影像特征,然后依据特征从遥感信息中识别并提取所需的有用信息。
4、信息应用 信息应用是指专业人员按不同的目的将遥感信息应用于各业务领域的使用过程。信息应用的基本方法是将遥感信息作为地理信息系统的数据源,供人们对其进行查询、统计和分析利用。遥感的应用领域十分广泛,最主要的应用有: 军事、地质矿产勘探、自然资源调查、地图测绘、环境监测以及城市建设和管理等。
(三)遥感原理
振动的传播称为波。电磁振动的传播是电磁波。电磁波的波段按波长由短至长可依次分为: γ-射线、X-射线、紫外线、可见光、红外线、微波和无线电波。电磁波的波长越短其穿透性越强。遥感探测所使用的电磁波波段是从紫外线、可见光、红外线到微波的光谱段。 太阳作为电磁辐射源,它所发出的光也是一种电磁波。太阳光从宇宙空间到达地球表面须穿过地球的大气层。太阳光在穿过大气层时,会受到大气层对太阳光的吸收和散射影响,因而使透过大气层的太阳光能量受到衰减。但是大气层对太阳光的吸收和散射影响随太阳光的波长而变化。通常把太阳光透过大气层时透过率较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 紫外、可见光和近红外波段。 地面上的任何物体(即目标物),如大气、土地、水体、植被和人工构筑物等,在温度高于绝对零度(即0°k=-273.16℃)的条件下,它们都具有反射、吸收、透射及辐射电磁波的特性。当太阳光从宇宙空间经大气层照射到地球表面时,地面上的物体就会对由太阳光所构成的电磁波产生反射和吸收。由于每一种物体的物理和化学特性以及入射光的波长不同,因此它们对入射光的反射率也不同。各种物体对入射光反射的规律叫做物体的反射光谱。遥感探测正是将? 8幸瞧魉�邮艿降哪勘晡锏牡绱挪ㄐ畔⒂胛锾宓姆瓷涔馄紫啾冉希�佣�梢远缘孛娴奈锾褰�惺侗鸷头掷唷U饩褪且8兴�捎玫幕�驹�怼?nbsp;
(四)遥感的分类
为了便于专业人员研究和应用遥感技术,人们从不同的角度对遥感作如下分类: 1、按搭载传感器的遥感平台分类 根据遥感探测所采用的遥感平台不同可以将遥感分类为: 地面遥感,即把传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等;航空遥感,即把传感器设置在航空器上,如气球、航模、飞机及其它航空器等; 航天遥感,即把传感器设置在航天器上,如人造卫星、宇宙飞船、空间实验室等。 2、按遥感探测的工作方式分类 根据遥感探测的工作方式不同可以将遥感分类为: 主动式遥感,即由传感器主动地向被探测的目标物发射一定波长的电磁波,然后接受并记录从目标物反射回来的电磁波; 被动式遥感,即传感器不向被探测的目标物发射电磁波,而是直接接受并记录目标物反射太阳辐射或目标物自身发射的电磁波。 3、按遥感探测的工作波段分类 根据遥感探测的工作波段不同可以将遥感分类为: 紫外遥感,其探测波段在0.3~0.38um之间; 可见光,其探测波段在0.38~0.76um之间; 红外遥感,其探测波段在0.76~14um之间; 微波遥感,其探测波段在1mm~1m之间; 多光谱遥感,其探测波段在可见光与红外波段范围之内,但又将这一?
(五)遥感技术的特点
遥感作为一门对地观测综合性技术,它的出现和发展既是人们认识和探索自然界的客观需要,更有其它技术手段与之无法比拟的特点。遥感技术的特点归结起来主要有以下三个方面: 1、探测范围广、采集数据快 遥感探测能在较短的时间内,从空中乃至宇宙空间对大范围地区进行对地观测,并从中获取有价值的遥感数据。这些数据拓展了人们的视觉空间,为宏观地掌握地面事物的现状情况创造了极为有利的条件,同时也为宏观地研究自然现象和规律提供了宝贵的第一手资料。这种先进的技术手段与传统的手工作业相比是不可替代的。 2、能动态反映地面事物的变化 遥感探测能周期性、重复地对同一地区进行对地观测,这有助于人们通过所获取的遥感数据,发现并动态地跟踪地球上许多事物的变化。同时,研究自然界的变化规律。尤其是在监视天气状况、自然灾害、环境污染甚至军事目标等方面,遥感的运用就显得格外重要。 3、获取的数据具有综合性 遥感探测所获取的是同一时段、覆盖大范围地区的遥感数据,这些数据综合地展现了地球上许多自然与人文现象,宏观地反映了地球上各种事物的形态与分布,真实地体现了地质、地貌、土壤、植被、水文、人工构筑物等地物的特征,全面地揭示了地理事物之间的关联性。并且这些数据在时间上具有相同的现势性。
参考资料:
哈密土墩测区航磁、航放及航电数据的数字图像处理
张玉君 郭毅
(地矿部航空物探技术中心,航空物探研究所)
摘要:本文介绍利用数字图像处理技术对新疆哈密土墩测区航磁、航放、航电数据进行显示、增强和解释的方法和结果。所研究的图像复原技术有效地消除了航放数据中由于大气本底变化而造成的条带噪声;此方法同样适用于航电数据的预处理。通过研究,应用三元素图像、双元素图像、比值图像、散度图、立体阴影图、一次或二次导数图、局部自适应增强图、玫瑰图、灰度分割、K-L变换、YIQ—RGB转换等,提取了三个方面的地质信息:①构造形迹;②岩性填图;③找矿异常。本工作显示出数字图像处理技术对于显示和解释航空物探数据方法的魅力,它具有快速、直观、易于综合三大特点。
一、前言
在地学领域中,数字图像处理最早主要用于遥感。地球物理学家已认识到,任何空间变化的地球物理数据都可以用数字图像处理技术来显示并解释。本工作所利用的参数有:航空放射性(钾、钍、铀,TC总道),航磁,三频航电(520Hz、2020Hz、8020Hz三种频率,实、虚分量),卫片假彩色图像作为参考。
飞行所采用的高灵敏度的综合航空测量系统由下列设备组成:两箱总体积为32000cm3的NaI晶体,灵敏度为0.5nT的质子旋进磁力仪及Tridem电磁系统。飞行高度75m,测量比例尺为1∶2.5万。该测区钾含量变化范围0~4.6%,钍含量变化范围0~47ppm,铀含量变化范围0~9.1ppm;磁场相对动态范围为3540 nT。
二、航放航电数据的预处理
常规图像处理要先做预处理。由于大气本底的不稳定性,航放原始资料常常伴随有“条带”现象,来自大地的有用信息经常被淹没在“条带”噪声之中。本工作研究了一种图像复原技术。其原理示于图1。该方法成功地去除了存在于航放数据中的“条带”噪声。
图2左上角为总道原始数据图像,右上角是经若干次滑动平均得到的噪声图像,左下角是减去噪声干扰后的总道图像,右下角为总道最终复原图像。
K、Th、U三元素图像实际上是一种区域地球化学图件,它与卫片图像非常相似。
与航放类似,在航电原始数据中,由于仪器的偏置值和零点飘移也存在着严重的“条带”现象,利用上述图像复原技术,航电图像也得到了显著的改善。图3(彩版附图8)显示了8020Hz实分量图像复原前、后的对比。航电数据的预处理还包括图像编辑、Wallis和中值滤波。
图1 航放图像复原处理流程
图2 航放总道复原对比图像
三、航空物探数据图像的增强和解释
提取构造形迹信息
航放、航电数据的方向导数图像包含丰富的地质构造信息,对于航磁来说为了提取构造形迹最有吸引力的是立体阴影图像。
Dods等(1984)提出的计算磁场立体阴影图的公式如下:
张玉君地质勘查新方法研究论文集
式中:
λ——光源方向与表面法线之间的夹角;φ——光源高度角;θ——光源方位角。
图4(彩版附图8)为航磁彩色立体阴影图像,图中同时表现了磁场幅值及按上式计算的梯度两种变量,选择光照方向为北西。每个象元上的色别代表总磁场,同时,该象元色别的明暗度依该点的斜率或梯度而变化(Holroyd,1986)。
磁场双向导数图、彩色立体阴影图以及经局部自适应直方图均衡化增强后的图像显示出该地区的构造特征。根据上述这些图像制成构造形迹图(图5彩版附图8),共确定了50多条构造特征线。利用航磁、航放、航电综合解释来研究构造特征,在某些情况下,可以得到关于断面倾向的补充信息。玫瑰图显示了构造形迹的频率统计分布。
岩性填图
RGB-YIQ功能对于多参数图像增强很有用。它将彩色图像的RGB三波段转换为明度(Y)和色度(I和Q),近似地讲,YIQ相当于IHS(明度、色别和色饱和度)。转换和逆转换按下述公式进行:
张玉君地质勘查新方法研究论文集
张玉君地质勘查新方法研究论文集
在本测区,我们应用RGB←→YIQ变换达到两种目的:①利用Y、I、Q三组分之间较R、G、B相关性更小的特点。通过RGB-YIQ-SCALE-RGB处理改善了航放图像的彩色纯洁度;②增强磁电放综合参数图。这两种图件对于岩性填图都很有用。
由航放三元素(K、Th、U)及航电三个频率的振幅
组成一个六波段图像,通过非监督分类获得九种岩性类别(图6):①超基性岩;②Cu-Ni矿靶区;③砂矿靶区;④花岗岩;⑤闪长岩;⑥变质岩;⑥混合岩;⑧第四系沉积;⑨第三、四系沉积;⑩第三系沉积。
这些类别的均值向量(K、Th、U)列于下表1。
表1
提取铜镍和砂矿异常
根据已知铜矿—镍矿含K低,位于断裂附近并伴有局部磁异常的模式,圈定了20处铜镍矿异常靶区,其中两个异常已被地面工作证实为富铜一镍矿化,其中一个铜品位高达2%。这些异常中的K平均含量为0.84%。
按Th和U的高含量值并属于分类中的第四系沉积圈定了砂矿异常靶区,Th和U的平均含量值分别为15.4和6.09 ppm。Th道和U道的高异常可能是锆石和独居石所引起。
原载《勘探地球物理北京(89)国际讨论会(UCEGSEG),论文摘要》,1989。
关于《航空数据分析》的介绍到此就结束了。