【简介:】本篇文章给大家谈谈《飞机起落架的主要作用》对应的知识点,希望对各位有所帮助。本文目录一览:
1、飞机起落架上的减震支柱的工作原理
2、什么叫飞机起落架 飞机起落架的作
本篇文章给大家谈谈《飞机起落架的主要作用》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、飞机起落架上的减震支柱的工作原理
- 2、什么叫飞机起落架 飞机起落架的作用和意义
- 3、飞机前起落架上的扭力臂的作用是什么?
- 4、支柱式起落架应用于什么飞机?有什么应用特点?
- 5、飞机的飞行利用了什么原理?
- 6、飞机为什么要用起落架,这跟压强有关吗
飞机起落架上的减震支柱的工作原理
飞机起落架上的减震支柱的工作原理:当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。
飞机上应用最广的是油液空气减震器,作用:
飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。
什么叫飞机起落架 飞机起落架的作用和意义
飞机起落架飞机面停放、滑行、起飞着陆滑跑用于支撑飞机重力承受相应载荷装置简单说起
落架点象汽车车轮比汽车车轮复杂且强度能够消耗吸收飞机着陆
撞击能量概括起飞机起落架主要作用四:
*
承受飞机面停放、滑行、起飞着陆滑跑重力;
*
承受、消耗吸收飞机着陆与面运撞击颠簸能量;
*
滑跑与滑行制;
*
滑跑与滑行操纵飞机
由于飞机飞行速度低飞机气外形要求十严格飞机起落架都固定
制造说需要高技术飞机空飞行起落架仍暴露机身外随着飞机飞行速度断
提高飞机快跨越音速障碍由于飞行阻力随着飞行速度增加急剧增加暴露外起
落架严重影响飞机气性能阻碍飞行速度进步提高便设计收放起落架
飞机空飞行起落架收机翼或机身内获良气性能飞机着陆再起落架放
必失做足处由于起落架增加复杂收放系统使飞机总重增加总
说于失现代飞机论军用飞机民航飞机起落架绝部都收放
部超轻型飞机仍采用固定形式起落架
飞机前起落架上的扭力臂的作用是什么?
飞机的起落架与轮胎之间是靠活塞减震和增加阻尼的。活塞在气缸里是可以旋转的,所以,在需要转向的时候,就无法通过气缸和活塞向轮胎施加转向扭力。为了把这个转向所需要的扭力施加到轮胎上,于是就增加了这个扭力臂。它的作用就是,当需要转向的时候,起落架的旋转可以通过扭力臂把扭力传递到轮胎上,使轮胎随同起落架一同转向,以达到控制飞机行走方向的目的。
当然,在不需要转向的时候,他还起着保证轮胎与机身的平行的作用。
支柱式起落架应用于什么飞机?有什么应用特点?
支柱式起落架由外筒和活塞杆套接起来的缓冲支柱,机轮直接连接在支柱下端,支柱上端固定在机体骨架上,其承力支柱和缓冲器是一体。
支柱式起落架的特点有以下几点:
1)结构简单,重量轻(相对于摇臂式起落架);
2)承受水平撞击减震效果差;
3)减震支柱受弯矩较大
4)密封装置易磨损;
5)现代飞机一般采用支柱式起落架,也多被大型民航客机采用。(如图,下方为
苏33前起落架和波音747主起落架)
构架式起落架由撑杆和减震支柱铰接而成空间支架,结构重量较轻,构造较简单,但外廓尺寸大,很难收入飞机内部,在一些轻型低速飞机上使用的较多,高速飞机已不采用。
摇臂式起落架的机轮通过一个摇臂悬挂在承力支柱和缓冲器的下面,其特点如下:
1)缓冲器只承受轴向力,不受弯矩,所以密封性较好,不易漏油,摩擦力较小;
2)吸收正面来的水平撞击载荷的性能较好;
3)缓冲器及接头受力较大,结构复杂,重量较大。
三种起落架结构如图(上方)所示:
飞机的飞行利用了什么原理?
一、飞行的主要组成部分及功用
**到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成
1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
*飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力
**飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理
流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
**连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。
伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。
**飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。
* 机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。
**飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。
1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。
4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。
*以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。
三、影响升力和阻力的因素
**升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。
1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。
2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。
3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。
飞机为什么要用起落架,这跟压强有关吗
飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。初期的飞机起落架都由固定的支架和机轮组成,飞行中产生很大的阻力。现代除少数低速小型飞机外,起落架在飞行中都收入机翼和机身内。
组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。
起落装置--起落装置又称起落架,是用来支撑飞机并使它能在地面和其他水平面起落和停放。陆上飞机的起落装置,一般由减震支柱和机轮组成,此外还有专供水上飞机起降的带有浮筒装置的起落架和雪地起飞用的滑橇式起落架。它是用于起飞与着陆滑跑、地面滑行和停放时支撑飞机时增大受力面积减小压强.
具体你可以看看参考资料
关于《飞机起落架的主要作用》的介绍到此就结束了。