【简介:】本篇文章给大家谈谈《中国航空信息中心官网》对应的知识点,希望对各位有所帮助。本文目录一览:
1、飞机上的WIFI为什么会延迟?
2、什么是航空电子客票
3、高分悬赏:航空电子
本篇文章给大家谈谈《中国航空信息中心官网》对应的知识点,希望对各位有所帮助。
本文目录一览:
飞机上的WIFI为什么会延迟?
之所以网速这么慢,主要是因为卫星通信还存在一些短板。一直以来,传统的卫星通讯基于C频段和Ku频段,而且受到发射功率,天线尺寸等因素的影响,能够满足普通老百姓日常使用的普适性卫星通信网络在技术上难度很大,截至目前,卫星通信的用户基本锁定于军队、政府、金融机构,以及一些实力雄厚的跨国公司。
香农定理是信息论的基础理论,根据香农定理,信息传输能力与带宽和发射功率成正比,与背景噪音功率成反比。如果要把信息传输能力提升上去,比较现实的做法是提升“信息公路”的宽度,或者提升信号的发射功率。不过,C频段和Ku频段相对有限,而且非常宝贵,“信息公路”的宽度天然受到限制。而受技术水平限制,信号的发射功率的提升也不是无节制的。
因此,通过WIFI连入机载通信系统,再通过卫星通讯的方式上网,就以目前的技术水平而言,上网的速度和体验还很难达到大家在自己家中连接WIFI上网的水平。由于航空电子设备需要非常安全的电磁环境,而手机在打电话或使用数据流量上网时,手机信号则有可能对机载通信导航设备造成干扰。
像测距系统工作频率在900—1000MHz,而在909—915MHz和954—960MHz,中国联通部署了2G网络,在935——954MHz和930-935MHz,中国移动部署了2G网络。这就使测距系统工作频率与运营商的移动网络发生冲突。
飞机在飞行中,要明白“自己在哪里”,“要到哪里去”,也需要地面雷达站、塔台、卫星的辅助。一旦乘客使用手机时对飞机的电磁环境造成了影响,就有可能导致飞机“听不清”外界传输过来的信息。因此,机载通信导航有可能受到手机信号的干扰。
什么是航空电子客票
电子客票是指利用计算机网络,不需要填写有价纸票,由电子认证来提供旅客运输和航线使用的票证。电子客票保存在航空公司的计算机系统中,它包括航程、电子票联及在适用情况下的登机牌。旅客可使用电话、互联网及其他终端进行订座、付款。电子客票系统记录旅客需求并产生虚拟票证影像但不给出纸质机票。
旅客登机时只需出示有效证件及电子票证编码,系统就会打印出登机牌和收据,即可登机。使用电子客票使旅客避免了保存、传送或遗失机票的麻烦,而且可用互联网24小时订票,对航空公司来说节省了机票的印制、填写、回收等手续,降低了成本,加快了资金流转、扩大了销售渠道。
扩展资料:
一、客票使用
电子客票为记名式,只限客票上所列姓名的旅客本人使用,不得转让和涂改,否则客票无效,票款不退。旅客应在客票有效期内,完成客票上列明的全部航程。
旅客使用客票时,应交验有效客票,包括乘机航段的乘机联和全部未使用并保留在客票上的其他乘机联和旅客联,缺少上述任何一联,客票即为无效。旅客需注意,在办理乘机手续过程中,确保航空公司代理人只撕掉了应撕的票联。
国际和国内联程客票,其国内联程段的乘机联可在国内联程航段使用,不需换开成国内客票;旅客在我国境外购买的用国际客票填开的国内航空运输客票,应换开成我国国内客票后才能使用。
客票自旅行开始之日起,一年内运输有效。如果客票全部未使用,则从填开客票之日起,一年内运输有效。有效期的计算,从旅行开始或填开客票之日的次日零时起至有效期满之日的次日零时为止。特种客票的有效期,按该客票适用票价的有效期计算。
由于航空公司的原因,造成旅客未能在客票有效期内旅行,其客票有效期将延长到航空公司能够安排旅客乘机为止。
二、乘机手续
购买电子客票且持有T4联的旅客可以和普通旅客一样在所属航空公司值机柜台办理乘机手续;没有T4联的旅客必须凭购票时使用的有效身份证件原件到所属航空公司指定的柜台办理乘机手续。若旅客身份证件信息与订票系统信息不相符将被拒绝登机。
旅客身份得到确认后,工作人员将为旅客打印T4联、登机牌及行李牌,旅客必须凭登机牌与T4联才能通过安检,同时T4联和登机牌共同构成旅客的报销凭证。
参考资料来源:百度百科-电子客票
参考资料来源:百度百科-航空电子客票
高分悬赏:航空电子技术的发展史
l2 f2一fl7 \/航空电-Y-技术2000年第3期(总IOO期) \J ≥综合航空电子技术发展展望霍曼\/.7f [摘要】从军用航空电子在21世纪将面临的挑战问题出发.详细论述了有关开放系统、COTS 技术等在未来航空电子发展中占有重要地位的问题.并论厦欧洲各国的情况厦航空电子在信息战中的作用,指出综台化仍是未来军用航空电子系统的发展方向,向着高度综合、信息化和智能化发展.【关键词】开放系统;COTS;JSF;信息战【中图分类号】V243;V443 【文献标识码】A [文章编号】1006-141X(2000)03--0012--06 1 引言耳同鹞空屯}设备当我们跨人21世纪之际,追溯2O世纪军用航空电子技术的发展历程,展望21世纪军用航空电子技术的发展将对未来综合航空电子技术的发展有着十分重要的意义.综合航空电子技术发展至今近半个世纪,基本上经历了分散、联合、综合到高度综合四个阶段;航空电子系统结构亦是如此,同样经历了分立式、集中式、集中分布式和资源共享式四个阶段.在这几十年中,从事航空电子技术研究和系统开发的工程技术人员都在致力于为未来的军用飞机开发和研制“理想的”综合航空电子系统工作,井取得了显著的成果.在综合航空电子技术发展的漫长过程中,美国一直处于领先地位,并有着巨大的技术储备.20世纪70年代初的数字式航空电子信息系统(DAIS)计划、80年代中期的“宝石柱”计划和9O年代初的“宝石台’宗合航空电子系统计划是三项著名的计划,并被同行们视为航空电子发展史中的里程碑.这些计划所研究和开发的系统及技术成果均不同程度地用于新型军用飞机中,最具代表性的就是美国空军的F-22战斗机.F-22战斗机的综合航空电子系统采用了“宝石柱”计划的设计思想及研究成果,通过硬件和软件的多重应用实现了系统的通用化;通过把硬件划分成小型的易于替换的基本硬件实现了系统的模块化;通过资源共享、互连和信息融合实现了系统的综合化.F-22的综合航空电子系统代表了世界军用航空电子研制的最高水平.随着航空电子技术综合程度的不断提高,强大的航空电子系统为作战飞机实现多功能——全无候的探测能力、武器投放能力和电子对抗能力提供了保证,已成为现代军用飞机提高作战性能的重要手段.与此同时,航空电子系统在飞机上的比重越来越大,其费用也相应增加,例如:F_4飞机的每千克成本是330美元,F_15飞机每千克成本是638美元,而F-22飞机每千克成本高达5435美元.由于在军用飞机特别是先进飞机的成本构成中,航空电子成本已占整个成本的30%一50%,因此导致飞机寿命周期费用大幅度增加,由此*在未来的军用飞维普资讯 综合航空电子技术发展展望霍曼机研制计划例如美国的联合攻击机OsF)计划中首次把“经济上可负担得起(afordability),即经济可承受性”作为飞机必须考虑的重要特性之一。除此之外,由于数字技术、微电子技术.计算机技术和信息处理技术日新月异的发展,烧航空电子系统可以实现信息的综合传输、综合处理、综合控制和显示,为航空电子系统综合化提供了基础,由此,推动了军用航空电子技术的发展.但是,在整个电子技术领域中军用航空电子技术所面临的形势非常严峻.他们的地位发生了很大的变化.主要表现在两个方面,其一是纯军用航空电子市场正在萎缩.据洛克希德·马丁公司统计,1975年美国军方在半导体集成电路上花费7亿美元,约占美国总市场额的六分之一.而1995年五角大楼在半导体芯片上付出l1亿美元,但是美国的总市场额已高达1500亿美元,也就是说五角大楼所占份额不足1%.激烈的市场竞争、有限的利润以及军用相关特殊要求都使芯片制造商把注意力投向其他更高利润的领域.其二是军用飞机的航空电子元器件过时问题.目前,F-22飞机就面临着此问题的困扰,飞机投人服役还需6年时间,可是系统中所采用的INTEL公司生产的1-9000芯片,已不再生产,原因是INTEL公司撤掉了它的军用生产线.据F 2研制办公室统计,F-22飞机投人使用时大约400个元器件有可能不再生产.这类同题还将随着防务预算的减少、军机市场的萎缩以及研制和生产时间延长而变得更加严峻。军用航空电子只有顺应潮流才有出路.对此,各国军方和研究人员都在积极寻求解决的办法,美、英、法、德等国军方特别是美国空军已认识到,使军用和商用航空电子系统既能经济上可承受又能应付迅速发展变化的技术和系统需求,采用模块化、开放式综合系统结构是关键.美国率先提出军用航空电子采用开放式系统结构(OSA),尽可能采用民用标准和商用成品(COTS)的战路思想.目的之一是降低飞机的成本,之二是迎接未来军用电子市场更大的挑战.美国90年代中后期开始研制的JSF飞机综合航空电子系统则是采用开放式系统结构和商用成品的范例.JSF飞机的综合航空电子系统以F-22飞机的综合航空电子系统结构为起点.不仅对数据的处理,而且对传感器的信号处理和射频口径也能进行更为深度的综合.它利用“宝石台”计划的成果,采用开放式系统结构和商用成品,利用联合式航空电子系统的最有用特征以及“即插即用”的软件模块,在解决了最大的经济可承受性问题的同时,其综合程度比F-22飞机又前进了一大步.2 开放式系统结构“开放式系统”本是计算机学科术语,系指遵循公开标准的计算机系统.美国国防部防务采办术语和缩略语1997年版中定义:“开放式系统是执行接口、服务及支持格式的开放和公开一致处理所坚持的规范,从而使正确设计的单元以尽可能少的更改就能在较广泛的系统范围内利用,与本地和远程系统的其它单元相互操作并以易于移植的方式与用户交互作用的系统.”由此可见,开放的前提是遵循公开一致的标准和规范。美国空军已把应用军用专用技术和商用技术实现系统从传统的“封闭式结构”向经济上可承受的、灵活的“开放式结构”转变视为当前一项挑战.1997年9月JSF办公室经过3年系统方案定义和演示,公布了2.0版“JSF航空电子系统结构定义(JAAD)”.JAAD仅是一份初稿,希望在2001年以前通过JSF航空电子系统方案演示阶段积累的数据使JAAD 有实质性的发展./AAD的主要内容如下:(1)总层次划分.总层次划分为6层,维普资讯 l4 航空电子技术2000年第3期(总100期) 第1层即最顶层为超系统(由空中、海上和陆上多系统构成的系统);第2层为JSF武器系统:第3层为航空电子各分系统:第4 层为综合核心处理等功能区;第5层为硬/软件模块;第6层即最底层为硬做件元件.JAAD的重点在第3、4层.(2)航盏缱油骋煌*络(UAN).采用~个以民用标准为基础的统一的数字式航空电子系统网络.据JSF开放式系统结构综合产品小组(OSA IPT)对9种可供选择的UAN 高速总线分析和评审,实时可扩相干接口(SCVRT)和航空电子环境光纤通道(F(1_A E) 最优.由于光纤带宽较宽,因此能够以较少费用实现重量增容.这是控制综合航空电子系统费用,简化综合、试验和改进的一大进步.(3)综合核心处理.JAAD要求把数字信号处理、数据处理以及其他计算性要求的任务例如座舱显示发生等都集中到共享、窑错和高性能的综合核心处理(ICP)N内,但并不排除在其他功能区嵌入处理机。(4)座舱人机接口.JSF座舱将使用显示高分辨率彩色字符和图象的多功能显示器,其它正在考虑的显示器包括平视显示器和头盔显示器.JAAD 中选用彩色液晶显示器和头盔显示器作为未来战斗机人机接口的基础,与F-22飞机相比前进了一步.(5)综合射频撵铡和综合电光探测.JAAD对综合撵测功能区未作详细说明,因为这项技术成熟而且其开放式系统原理应用少.由于射频和电光/红外探测系统占飞机出厂航空电子成本的60%,综合产品小组自然重视,为此制定若干“技术成熟”计划,集中演示那些对经济可承受性、保障性、生存性和杀伤力有重大作用的技术.其中主要有多功能综仙淦迪低?MIRFS)计划和综合探测器系统(iss卅划.前者的最大优点就是减少了天线和光或红~F(IR)D径的数量;后者是由美国空军研究实验室和JSF计划联合资助的一项3400万美元的技术风险减缩研究计划.该计划由洛克希德-马丁和渡音公司(以前的麦道公司)领导的两个小组在四年内完成.目的在于采用相对少量的模块类型构成一个综合的、可重构的射频处理结构.ISS是低成本、低重量、小空间、低功率和低冷却的射频支援电子设备.两个小组的专家认为,ISS是研制工作不是由技术推动,而是由经济可承受性推动,他们只需要重新组合现有的功能,来达到尺寸、重量、体积和费用降低一半的目标.波音公司小组估计在以资源共享为特征的ISS 结构中,采用1998年的技术可以花费相当于F-22飞机的50%--60%的费用,而达到与F 2飞机相同的射频功能.虽然,经济可承受性是进行ISS 研制的主要推动力,但是,通过故障重构增强任务的可靠性,通过信号及发射装置的综合控制获得较好的电磁兼容性也是非常重要的.(6)机械和电气接口.JAAD 要求包装、热管理、电源和连接器起到支持高本征可靠性、客错、长期增长和优良保障性的作用.在很大程度上JAAD决定着机架、电缆敷设、发电、环境控制及其他飞机结构设备的特征.一旦进入详细设计和生产阶段,更改很难,花费也大.因此,此决策需要非常的谨慎,而且需要进行验证.可以看出,JAAD 充分注意到机电元器件对系统可靠性、维修性和经济可承受性的深远影响.(7)软件.预计JAAD提出的软件“建筑法则”将具有可移植性、发展性、维修性、保密性、完整性以及高性能.软件主要建筑法规是选择编程语言.据JSF开放式系统结构综合产品小组对Ada95、c”和Java语言的评审,在移植性、发展性、保密性、重用性及性能评比上,Ada95得分最高.虽然,C 是受到广泛支持的通用语言,而且在当今的商用航空系统中多选c”语言,但是考虑到JSF飞机的某些特点,如功能可以被划维普资讯 综合航空电子技术发展展望霉曼分,并可以被保护,所以,最好采用Ada95 语言,另外,JSF某些单独保密的功能上使用Ada95可能更好.因此,Ada95是开放式系统结构可选择的最佳编程语言.航空电子系统采用开放式系统结构的重要意义表现在:(】)实现长期性能,并且达到经济可承受性的目的.开放式系统结构有助于用最低的寿命周期费用达到所要求的性能和保障性.Cz)正确划分系统结构可有效减缓航空电子元件过时的问题.(3)由于开放式系统结构具有故障检测、隔离和修复功能,因此减少和缩短了停机时间,保证了飞机具有较高的出勤率,从而提高系统的可用性.从JAAD的要点中使我们了解了JSF飞机综合航空电子系统的水平,它所采用的开放式综合航空电子系统结构不仅顺应了军用航空电子系统的发展趋势,而且是满足多国多军兵种不同要求的必然结果.另外,JSF航空电子综合产品小组的任务是使JSF 飞机航空电子系统方案和系统结构在费用和性能上尽可能地达到平衡,希望JSF飞机总的寿命周期费用比F-22飞机降低17%.3 COTS技术的应用美国国防部把COTS定义为市场上销售的产品,并在制造商的产品目录中以确定的价格出现,而且可直接从制造商或通过制造商的销售网提供给任何公司或个人使用.1994 年美国国防部就制订了有关政策,为了达到军用设备能够早日采用经济上可承受的前沿电子技术产品的目的,鼓励在军用设备中采用最好的商用元器件.20世纪90年代中后期,在航空电子与计算机领域,COTS技术已很有市场,突出表现在大量军用飞机的航空电子设备改进工作中,如:F-14、F-16、F,A—l8和AV一8B 飞机的任务计算机等的改进都采用了COTS 技术.特是在JSF飞机的航空电子系统的研制过程中,美国军方为了实现经济上可承受、性能、可改进性和重新使用能力四大指标,极力强调采用COTS技术.JSF的研究人员曾把两种民用干线飞机和支线飞机的显示系统与F.16飞机的显示系统作为研究依据,虽然,这三种飞机采用的液晶显示技术是不同的,但是,相对于产品开发的成本而言是可比的.在F-16飞机和两种民用飞机之间,单个显示系统的生产费用差别大概是30~50%.其中,部件成本的差别可能在15%--25%之间;质量保证和测试费用的差别可能在13%-24%之间.通过研究得到以下结论:采用民用部件和运作方式,单机生产费用最高可以节省50%.其中,部件采购占26-45%,如果扩大使用民用部件的范围的话,这项成本还有可能降低15-25%.但是,如果军用飞机系统需要根据设计规范设计,需要采用有限的生产线生产,并且采用特定的设计—成本原理的话,这个军用系统的成本还将增加10-20%.可见,军用飞机采用商用部件在节省费用方面具有很大的潜力,因此,采用COTS技术具有很好的前景.JSF项目的管理者和航空电子系统结构的研究人员将在各方面尽最大可能采用COTS技术,包括处理和网络结构.当然,在航空电子系统结构中采用COTS技术的主要目的是降低成本,另外,为了使应用软件和某些硬件可以移植到其它飞机上,将在罔络,操作系统和应用程序接口方面采用开放式系统标准.那么,在航空电子系统结构中采用COTS技术和开放式系统标准的主要目的是增加软*的寿命,使系统不受硬件技术过时的影响,而且容易改进.另外,采用COTS 技术还有一个潜在的优点就是允许在研制周期的晚些时候决定处理机和网络的选型,这样可以有更多的机会采用最新的技术,而且将更有效地达到降低寿命周期费用的目的.维普资讯 l6 航空电子技术2000年第3期(总100期) 由于美国综合航空电子技术的领先发展,给各国军方和研究人员很大启示,先后纷纷开展了综合航空电子技术的研究工作,特别是英、法、德和俄等国,有些技术已经用于改进现役飞机或在研飞机中,不过,这些国家的军用飞机计划也遇到了与美国同样的问题,他们还制定相应的计划予以解决,倒如英国的先进航空电子系统结构封装(A P)计划等.目前,这些计划还面临着标准化问题,为此,北约组织(NATO)为了解决其内部的航空电子系统非标准化问题,成立了标准航空电子系统结构联合委员会(ASAAC),目的是制订模块化航空电子系统标准.ASAAC的官员们认为:解决军用航空电子采用开放式系统结构既要节省费用又要提高作战任务性能的矛盾,方法之一是模块化.搞出一组通用模块,还必须在系统内和北约各国飞机之间可互换.这样,欧洲各国就能从减少物资清单和备件持有量获得巨大的好处.因为,模块适用的平台范围广,使采购费用降低,支持费用也会大量的削减,外场可更换模块也将使可用性提高.90年代初,英国、法国和德国开展了一项三国通用系统的可行性研究计划.这是一项五年计划,分两个阶段进行,并由ASSAC 管理.计划的第一阶段,将制定严格稳定的硬件、软件和网络接口标准.计划的第二阶段于I997年I1月开始,在第一个阶段研究成果的基础上,为满足开放式系统的需要,建立一个基本的、灵活的航空电子系统结构,这个系统结构能够适用于2000年以后的大多数平台.简言之,这项计划的目的是建立一套完整的军用核心航空电子系统标准,不但能够满足在2015年时间范围内出现的新的欧洲战斗机计划的需要;而且能够满足2002年前后改进现有装备计划的需要.为了支持该项计划,还进行了若干的技术和方案演示.这套军用核心航空电子标准将尽可能地采用民用标准,并将覆盖系统结构、软件、阿络和封装等方面,并且定义了通用功能模块(CFM)的范围,使这种CFM 既适用于新的欧洲战斗机,也适用于像“阵风”和EF2000 那样的飞机.21世纪把人类带人了信息化社会.国防装备电子信息化建设如同经济信息化一样逐渐加强.通过军事电子综合信息系统可以把各种信.息化武器平台连成一个大系统,在技术上实现大系统的对抗.现代高科技战争是世界技术革命和军事革命向纵深发展形势下的战争,是体系对体系的战争.其最大特点就是信息技术在指挥决策、武器控制、信息对抗和作战行动中的广泛应用,逐步形成信息化部队、信息化武器、信息化战场和信息化战争.未来战争将以信息战为基础,而航空电子将成为信息战的一个有机组成部分.信息战是对敌方的信息、以信息为基础的各种过程和信息系统施加影响,同时保护已方的信息、以信息为基础的各种过程和信息系统,最终取得“制信息权”的一切可能的行为.信息战所涉及的范围很广,一切与信息有关的事物都可能被纳入信息战范畴.广义的信息战要延伸到和平时期,即政治、军事、经济和科学等多方位,为争夺信息优势进行对抗;战争时期的信息战是和平时期信息战的延续和能量的激增.但是,信息战的核心还是战争,争夺“制信息权”的目的是夺取战争的胜利.原来的通信、控制、计算机和情报(c I) 概念已经发展成为指挥与控制战(c w),并定义为:在情报的相互支援下,综合运用作战保密、军事欺骗、心理战和实体摧毁,阻止敌方获得信息,影响、削弱或摧毁敌方指挥与控制能力,同时保护已方指挥与控制能力免受同类行动的影响.指挥控制战是信息战中的一个重要范畴,是将信息战应用到战场上去的一个战略过蹋*维普资讯 综合航空电子技术发展展望霍曼”无论在无人侦寨机有人侦察机,硬警机、战斗机及其它飞机上,航空电子即是获得信息情报的重要媒介,也是战术应用中实施作战战术、完成实俸攻击和摧毁的必要手段.航空电子是指挥控制战与信息战中至关重要的一环,是未来战争中克敌制胜。取得垒面胜利的关键手段之一.现代高科技战争的焦点是争夺信息优势.从科索沃战争来看,现代战争已构成“海陆空天电(tit)”五维一体的作战模式.2l世纪的战场将要求飞机和武器控制系统高度综合化,要求火/飞茁控制.推力矢量控制及武器发射控制的自动化和综合化,使驾驶员能集中精力作出高层次的管理决定,并且与支援部队进行协同作战.从而提高空战效率和生存率.2l世纪的军机对航空电子系统的功能和性能都有极高的要求,若满足这些要求,就必须采用集通用模块,人工智能、巨型计算机Ada语言、效据融合、高速效据总线等先进技术为一身的新一代航空电子系统.4 结束语综合的航空电子系统的发展主要受需求和技术发展的制约,从需求上讲,未来的军用飞机不但要求其综合程度更高,而且还要求经济上的可承受性:从技术发展而言,采用更先进的效字技术、搬电子技术和计算机技术会使航空电子系统的综合程度更高,采用民用标准和COTS可以大大地降低成本,基本上满足经济可承受性的要求.因此,若实现上述目标,必须加强关键技术的研究工作,如:模块化技术效据传输技术,软件技术,传感器效据融合技术航空电子智能化技术,COTS技术、综合射频技术和综合传感器技术等.毋庸置疑,综合航空电子技术是现代军用飞机航空电子系统的发展方向,并且将朝着更加综合化,信息化和智能化的方向发展.在航空电子综合技术迅速发展的今天.我们应该大力发展我国的综合航空电子技术.为早日研制出具有我国特色的综合航空电子系统作好关键技术预研工作和技术储备.在加速新机研制的同时,加速更新大批老机种的设备,尽快使我国军机更新换代.特别是在新机的研制过程中要有所创新、有所创造和有所借鉴,走一条平稳而快速的发展道路.{收稿日期2000-08-22) (上接第11页) 【1】Lt Col Chuck Pinnc./,JAST Avionics Lead.Joint Advanced Strike Technology Program Avionics ^rchitc吐II咒Definitlon.V,e~ on 1.0.1994.8.9 【2】中国航空工业第615研究所蝙.新一代航空电子系统文集1994年I收稿日期2000-08-18) 维普资讯
什么是“航电系统”
综合航空电子系统(下称综合航电系统)是现代化战斗机的一个重要组成部分,战斗机的作战性能与航空电子系统密切相关。可以说,没有高性能的航电系统,就不可能有高效能作战的战斗机。 综合航电系统在需求牵引和技术推动下已有几十年的发展历史,特别是近十来年,取得了引人注目的进展,促进了飞机作战效能的进一步提高。 然而,目前综合航电系统在使用过程中暴露出不少不足之处,亟待加以改进和完善;同时,21世纪的作战策略和方式的发展也对综合航电系统提出了更具挑战性的要求。因此,未来的十年,在解决经济上可承受性问题的同时,综合航电系统仍将向着更加综合化、信息化、技术化、模块化及智能化的方向发展,并且综合航电系统的功能、性能以及可靠性、维修性、保障性、测试性和综合效能也将出现突破性的飞跃。可以预见,航空电子综合化水平将得到不断提高,航空电子综合技术将向深度和广度发展,得到不断完善。 一、航空电子综合化技术向深度和广度发展 航空电子系统的发展历程业已证明,综合化是航空电子发展的灵魂和核心。综合化能压缩航空电子系统的体积和重量,减轻飞行员的工作负担,提高系统可靠性,降低全寿命周期费用等。 将于本世纪初服役的美国第四代战机F-22按常规需要60多根天线,工作波段不同的多种接收机、发射机都处于各自分立状态,现在已经综合成十几根天线,下一步还要继续综合。正在执行的综合传感器系统(ISS)计划,天线孔径、射频、信号处理、数字处理等都将采用共用概念。“综合孔径传感器系统”(IASS)用一个480×680像素的红外焦平面阵完成前视红外、红外搜索跟踪、电视摄像等功能;“分布孔径红外系统”(DAIRS)把导弹逼近告警装置、红外搜索跟踪和前视红外等功能综合成一个系统;“综合射频对抗系统”(SIRFC)、“综合红外对抗系统”(SIIRCM)将定向红外对抗和紫外线导弹告警结合起来。F-22、EF-2000飞机对机电系统实施统一的控制和管理,这就是所谓公共设备管理系统,并纳入综合航电系统统一管理和控制。下一步将朝着功能和能量的综合方向发展,由一个整体的综合系统完成目前由各机电系统完成的全部功能。 综合已不限于单机之内,最大限度地利用机外信息资源将是今后一个显著特点。通过数据链在编队飞机之间或电子战飞机和攻击机之间进行实时数据传输,例如美国海军提出的“协同作战能力”(CEC)概念。此外,预计到2020年,有人驾驶飞机与无人驾驶飞机混合编队作战将成为现实,飞机上的综合航电系统将成为海、陆、空、天综合立体网上的一个节点。 二、进一步开展开放式综合航电系统结构的研究与应用 开放式系统结构是由开放系统接口标准定义的一个结构框架,它的优点是:便于构成分布式系统;便于不同厂家生产的、不同型号的计算机或其他硬件之间的互连、互通和互操作;也便于硬件、软件的移植;便于系统功能的增强和扩充。此外,开放式系统结构还支持系统可变规模,有利于缩短研制开发周期。在计划开发、采购、维修及更新时能降低成本。其原因是它增加了可重新使用机会,更有可能使用商用货架产品(COTS)技术,还能快速建立系统模型。采用该结构后,就能较好地解决系统的功能扩充、修改,及元器件的更新换代。 美国空军把应用军用技术和商用技术实现系统从传统的封闭式结构向经济上可承受的、灵活的开放式结构转变视为当前一项挑战。这是因为开放式系统结构由民用向军用推广存在着争论,主要是由于标准和最佳性能不能兼顾,一些领域还不能完全满足军事上的需要,这就要求制订和贯彻各种标准接口,使不同的产品研制、生产单位都要遵循公开一致的标准和规范。此外,开放式系统结构不仅涉及硬件,也涉及软件。软件开放系统、软件可重复使用、软件可变规模与硬件的开放性同样重要,也是降低系统寿命周期费用、缩短研制开发周期的重要措施。因此,新一代综合航电系统的软件包括操作系统、应用程序、数据库、网络、人机界面等应遵循统一的系列标准、规范研制开发,软件的可重用、标准化、智能化、可移植性、质量、可靠性等都应列入表征软件技术的特征参数之中。 因此,今后十年,开放式工业标准向军用过渡趋势会更加明显,开放式系统结构向军事上应用的转移不可逆转。 图1所示是美国洛克希德·马丁公司推出的JSF综合航电系统的开放式系统结构。 三、广泛采用COTS技术 未来十年,COTS技术的应用研究将进一步加强。 为了实现经济上可承受、性能、可改进性和重新使用能力的四大指标,在新一代综合航电系统中将会更加强调采用COTS技术。COTS技术具有如下特点:显著减少专用器件、专用组件或模块、专用软件等的数量,从而降低科研生产成本;采用通用的、开放的技术标准,兼容性好;技术先进,符合技术发展潮流;具有良好的技术支持,便于扩充和升级,产品更新换代快;可以直接在商品货架上采购,供货渠道有保障;采购费用低廉;研制、生产周期短;产品维修和后勤保障较为方便,维修保障费用低;无须投入专项科研经费等。 在综合航电系统结构中采用COTS技术的主要目的还是降低成本。如JSF的综合核心处理机(ICP)将广泛采用COTS互连装置。预计处理机的能力要比F—22的高一个数量级,但成本只有后者的几分之一。此外,在开放式系统结构支持下,更新周期很短的商用产品,采用公开一致的民用标准,使其易于更新、易于发展、易于采用新技术。 四、实现高度的模块化 解决综合航电系统采用开放式系统结构既要节省费用又要提高作战任务性能的矛盾,方法之一是模块化。 模块化是综合航电系统发展的又一重要特征。模块化是实现结构简化和综合化的基础,也是实现系统重构的基础。集成电路和电子技术的高速发展已经能够使各种完整的功能“浓缩”于一个标准电子模块之中。 模块化航电系统的主要特征是结构分层。系统结构分层和综合化的关键,也是影响资源利用率的重要因素,在顶层设计时必须要折衷和权衡系统结构层次。模块化是为了系统重构、扩张、修改和维护,可大幅度地提高可用性,保证飞机随时处于可以起飞作战状态;通用化是为了最大限度地利用模块、部件、元件以减少品种降低成本。 标准模块(SEM)是模块化的基础。采用集成机柜、标准模块后,取消了外场可更换单元(LRU),全面采用通用的、标准的外场可更换模块(LRM);整个航电系统由三级维修变成二级维修,简化了航空电子维修,减少维修人员和地面维修设备,实现延期的维修或定期维修,从而大大减少了后勤保障费用。由于模块的标准是公开发布的,这对成本竞争和元器件的过时更改非常有利。每一个标准模块用若干个多芯片模块(MCM)或微波单片集成电路(MMIC)构成,而每个MCM或MMIC至少又有几十个VHSIC和ASIC芯片组成。利用通用模块可开发系统或子系统,即利用通用模块组合构成任一功能的航电子系统。 五、战斗机传感器进一步综合化 先进战斗机传感器的综合化趋势发展极为迅速。从本世纪初将要服役的F—22和JSF等第四代战斗机传感器来看,机上传感器实现全部综合化已近在咫尺。 由于新一代航电系统传感器的种类、数量、复杂性及数据量的增加,超出了驾驶员有效使用和管理传感器的能力,从而使传感器的综合成为一个突出的课题。多传感器综合(MSI)的目标是:改变目前各种传感器分立的状态,实现互为补充、互为备份、扬长避短、综合使用各传感器提供的信息;对多传感器实现综合的控制和管理,在现有的硬件和软件水平上获得比任何单独的传感器性能更高的传感器系统。 美国空军F-22战机传感器系统的天线及射频前端功能仍是分立的,雷达、RWR/ESM、CNI各有自己的天线及前端处理功能,综合起来完成雷达、EW、CNI等功能。而“宝石台”计划主要是要解决传感器区的综合问题。雷达舱内的设备已不是传统意义上的雷达,而是集雷达、CNI、EW、敌我识别(IFF)、无线电高度表、导弹制导数据链等功能于一体的综合射频系统。该计划提出用13个天线提供所有CNI/EW/雷达所需的功能。光电传感器的孔径也要综合,前视红外、红外搜索跟踪系统、导弹告警功能的综合,实现分布孔径红外系统(DAIRS)。传感器的信号处理和数据处理部分也要实现综合,使用统一的中频进行处理,A/D变换尽量向前端推移,使用标准的共用模块。完成信号处理和数据处理,然后通过统一航空电子网络,连接到综合核心处理机(CIP),在CIP中进行数据融合。对传感器的控制和功率管理也可通过这个通道完成。传感器区的充分综合将是一个很大的进步,在上述的各方面都将获得极大的收益。 将于2010~2040年陆续装备美国空军、海军及其盟国部队的JSF战斗攻击机的传感器系统将打破未来战斗机所需的雷达、电子战和其他关键功能的界线(见图2)。这意味着,用于扫描和跟踪目标这些传统雷达任务的有源电子扫描阵(AESA)在同一时刻也用于干扰、电子情报、通信和其他任务。而且AESA收集的数据将与机外数据源(如预警机、电子战飞机和卫星),以及机上的光电系统的信息进行融合。若2架或4架JSF在一起工作时,其能力远比同等数量的飞机单独工作要强。当陷入困境时,单架JSF也具有完成任务和自我生存的能力。
航空电子的主要领域
如同电子学一样,航空电子学是个庞大的学科,对其简单分类很不容易。下文试图介绍一些感兴趣的领域,由此你可以深入研究它们。 本文所关注的导航其含义为如何确定地球表明以上的位置和方向。
在通信系统出现不久,飞行能力就受限于上述这些条件了。从早期开始,为了飞行安全性,人们就开发出导航传感器来帮助飞行员。除了通信设备,飞机上现在又安装了一大堆无线电导航设备。 航电系统的独立出现是紧随这些功能的集成工作之后的。很早之前,生产商们就努力开发更可靠和更好的系统来显示关键的飞行信息。真正的玻璃驾驶仓是在最近5年才出现的。LCD或者CRT经常会倒退回传统的仪表。
如今,LCD显示的可靠性已足以让“玻璃”显示成为关键备份。但这只是表面因素。显示系统负责检查关键的传感器数据,这些数据能让飞机在严苛的环境里安全的飞行。显示软件是以飞行控制软件同样的要求开发出来的,他们对飞行员同等重要。这些显示系统以多种方式确定高度和方位,并安全方便地将这些数据提供给机组人员。 为了增强空中交通管制,大型运输机和略小些的使用空中防撞系统 (Traffic Alert and Collision Avoidance System 交通警告及防撞系统),它可以检测出附近的其他飞机,并提供防止空中相撞的指令。小飞机也许会使用简单一些的空中警告系统,如TPAS,他们以一种被动方式工作,不会主动询问其他飞机的异频雷达收发器信号,也不提供解决冲撞的建议。
为了防止和地面相撞,飞机上安装了诸如近地警告系统(GPWS,Ground Proximity Warning System),这种系统通常含有一个雷达测高计。新的系统使用GPS和地形和障碍物数据库为轻型飞机提供同样的功能。 气象系统如气象雷达(典型如商用飞机上的ARINC 708)和闪电探测器对于夜间飞行或者指令指挥飞行非常重要,因为此时飞行员无法看到前方的气象条件。暴雨(雷达可感知)或闪电都意味着强烈的对流和湍流,而气象系统则可以使飞行员绕过这些区域。
在最近,驾驶舱气象系统有了三项最重要的改革。首先,这些设备(尤其是闪电探测器如Stormscope或Strikefinder)已便宜了很多,甚至可以装备在小型飞机上了。其次,除了传统雷达和闪电探测器,通过连接卫星数据,飞行员可以获得远超过机载系统本身能力的雷达气象图像。最后,现代显示系统可以将气象信息和移动地图,地形,交通等信息集成在一个屏幕上,大大方便了飞行。 飞行管理系统出现在20世纪70年代,在原有的自动导航及通信控制及其他电子系统的技术上发展起来的。柯林斯(Collins)和霍尼韦尔(Honeywell)公司分别在其参与研发的麦道和波音飞机上率先引入集成的飞行管理系统。随着技术的进步,飞行管理系统的重要性不断提高,成为飞机上最重要的人机交互接口。集成了飞飞行控制计算机,导航及性能计算等功能。中央计算机加上显示和飞行控制系统,这三个核心系统使飞机上的所有系统(不仅仅是航电系统)更易于维护,更易于飞行,更安全。
引擎的监控和管理很早就在飞机地面维护方面取得了一定进展。如今这种监控管理已经最终延伸到飞机上的所有系统,并且延长了这些系统和零部件的寿命(同时降低了成本)。集成了健康及使用状况监控系统(HUMS,Health and Usage Monitor Systems)后,飞机管理计算机就可以及时报告那些需要更换的零件。
有了飞机管理计算机或者飞行管理系统,机组人员就再也用不着一张张地图和复杂的公式了。再加上数字飞行公文包,机组人员可以管理到小至每一个铆钉的任何方面。
虽然航电设备制造商提供了飞行管理系统,不过目前还是倾向于由飞机制造商提供飞机管理和健康及使用状况监控系统。因为这些软件依赖于它们装载在何种飞机上。 航空电子的主要发展方向已转向“驾驶舱背后”。军用飞机或者是用来发射武器,或者是变成其他武器系统的眼睛和耳朵。缘于战术需要,大堆的传感器装在军用飞机上。更大的会飞的传感器平台(如E-3D,JSTARS,ASTOR,Nimrod MRA4,Merlin HM Mk 1)除了飞机管理系统,还会安装任务管理系统。
随着精巧的军用传感器的广泛应用,它们已变得无所不在,甚至已流入军火黑市。警用飞机和电子侦察机如今则携带着更为精密的战术传感器。 空中雷达是主要的作战传感器之一。它和其地面基站一起,如今已发展得非常复杂。空中雷达最引人注目的一个变化就是可以在超远距离内提供高度信息。这类雷达从早期预警雷达(AEW),反潜雷达(ASW),一直到气象雷达(ARINC 708)和近地雷达。
军用雷达有时用来帮助高速喷气飞机低空飞行。虽然民用市场上的气象雷达偶尔也作此用,但都有严格的限制。 不管是军用的,商用的,还是民用先进机型的电子系统都是通过航空电子总线相互连接起来的。这些网络在功能上和家用电脑网络十分相似,然而在通讯和电子协议上区别很大。下面简要列出最常见的航空电子总线协议及其主要应用:
Aircraft Data Network (ADN): 飞机数据网络
AFDX: 商用飞机上 ARINC 664 的特定实现
ARINC 429: 商用飞机
ARINC 664: 参照上述ADN
ARINC 629: 商用飞机(波音 777)
ARINC 708: 商用飞机上的气象雷达
ARINC 717: 商用飞机上的飞行数据记录仪
MIL-STD-1553: 军用飞机 警用及空中救护飞机(大部分属直升机)现在已成为一个重要的市场。军机现在也常常用来帮助应对民间的非暴力不合作事件。警用直升机几乎都安装了视频或红外热成像仪,这样就可以追踪嫌疑犯或任何他们感兴趣的东西。警用直升机也安装了探照灯和扩音喇叭,这和警车上的用途是一样的。
很显然,空中救护或急救直升机上需要医疗器械,而这些很少被当作航空电子设备。然而,很多急救和警用直升机需要在一些令人不安的环境中飞行,这就需要更多的传感器,其中一些直到最近还被认为是纯粹的军机设备。 在功能划分上,新一代系统已明显从纵向划分过渡到横向划分,提出了功能区分的概念。功能区分是整个系统中功能特性相近、任务关联密切的部分,在同一功能区中可以实现资源共享,容易互为余度而实现动态的重构及容错。“宝石柱”结构将系统分为任务管理区、传感器管理区、飞机管理区。
任务管理区由任务数据处理机、任务航空电子多路传输总线、块多路传输总线、系统大容量存储器、武器管理系统和任务航空电子总线接口组成。该区的功能为:任务计算与管理(如火力控制、目标截获、导航管理、防御管理、外挂管理、地形跟随(TE)/地形回避(TA)/障碍回避(OA)、座舱管理、与其它两个功能区交联等)。
传感器管理包括通用信号处理机、传感器数据分配网络、数据交换网络、视频数据分配网络、传感器控制网络组成。该区的功能为:传感器数据分配、传感器信号处理、处理后信号的分发、传感器控制。
飞机管理区是由飞行控制、发动机控制、推力矢量控制、通用设备控制等几部分功能综合而形成,又称为飞机管理系统(VMS),其功能为支援与控制功能有关的飞机的飞行。 新一代系统第五个特点是向智能化发展。当代的航空电子系统只能将各种数据提供给驾驶员,或者经过处理后给出引导性的指示信号,有时变换成易理解的直观图示方式,但最终的判定、决断要驾驶员给出,美国正在研制的驾驶员助手系统(即专家系统)可以完成收集数据、推理和判断并做出决断,可以直接给出控制指令,也可以向驾驶员提出处理建议,由驾驶员决断及实施控制。神经网络的研究也取得很大进展,应用到机载后可以使航空电子系统具有自学习和自适应能力,人工智能的方法可以在航空电子系统中找到很多应用,例如目标的识别、分类;电子战信息分析、威胁制定;突防路线的实时建立;攻击目标优先级分类;武器选择;智能人机接口;本机完好情况监视及应急处理等。智能化系统使驾驶员从过量的任务负担中解脱出来,集中精力于高层次的判断,并可避免人脑在某些方面的能力不足。F-22战斗机及RAH-66轻型攻击/侦察直升机后期的生产型都准备选用驾驶员助手系统。
关于《中国航空信息中心官网》的介绍到此就结束了。