【简介:】本篇文章给大家谈谈《航空业包括航空制造业》对应的知识点,希望对各位有所帮助。本文目录一览:
1、C919首飞在即,国产大飞机原来是这样的!
2、飞机制造行业的现状和发展趋势如
本篇文章给大家谈谈《航空业包括航空制造业》对应的知识点,希望对各位有所帮助。
本文目录一览:
C919首飞在即,国产大飞机原来是这样的!
出品:科普中国
制作:南京航空航天大学大学生科学与技术协会戚耀文
监制:中国科学院计算机网络信息中心
C919大飞机即将首飞啦!C919是中国首款按照最新国际适航标准研制的干线民用飞机,于2008年开始研制,2015年11月2日,C919大型客机首架机正式下线;2017年3月,国内63名院士和专家组成的评审委员会一致同意通过国产大型客机C919首飞技术评审;2017年4月16日,C919在上海浦东机场进行了首次高速滑行测试;2017年4月23日,C919在上海浦东机场成功进行了高速滑行抬前轮测试,标志着C919的首飞已进入“读秒”状态......
2015年11月2日,我国自主研制的C919大型客机首架机,在中国商飞公司新建成的总装制造中心浦东基地厂房内正式下线。新华社记者丁汀摄
2017年4月23日,国产大型客机C919在上海浦东机场进行高滑抬前轮试验。王脊梁 摄
外形:小干线家族中的“大块头”
C919为双发涡扇中型机,毕竟是干线客机,长38.9米,连翼展35.8米,高12米,就算身高1米9的乘客走在机舱里也不会觉得不适,最大起飞重量为72吨,虽然没有波音777那么大,但已经是小干线家族中比较大的机型了,最大可容纳190人之多。
C919机身线条流畅,值得一提的是,飞机的机体从设计、计算、试验、制造全是中国自己做的,强有力地回应了对飞机制造自主性的诸多质疑。飞机采用了新一代超临界机翼,自主发展“一分钟”快速成型的方法提高了机翼曲面的质量,改善跨音速范围内的可控性,减少飞行阻力从而节省了很多燃料。为了全面认证C919的气动设计,满足对CFD技术的不同精度和效率的要求,不同构型、雷诺数的全、半膜的风洞测试不断开展,包括测力、测压、动力影响,增升装置设计方案选型、验证、确认等一系列超过15000的风洞“吹风”试验,从而拥有了比现役同类飞机更好的巡航气动效率。
再看看它的造型,就是霸气,像是戴着一副俊酷的墨镜。相比需要6块挡风玻璃的传统飞机,C919只有4块,机头更具流线型,使得飞行员视野更开阔,减少阻力。但是这种挡风玻璃工艺更复杂,制造难度也大。这也使得C919独特到只看脸就可以辨认出来。
由于飞机重量比较重,其发动机甚至比现役的波音737的都要大,所以C919采用了第三代铝锂合金材料,锂元素的加入使其比同等机型轻了5%-10%。飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,具有高耐腐蚀、质量轻等特点,但价格大约是常规铝合金材料的几十倍,所以在机体结构用量只占到了12%。
发动机:技术创新运营成本降低
航空发动机作为“航空之花”,可以说是航空技术和工业积累的完整体验。C919的发动机为LEAP-X1C发动机。
LEAP-X1C型发动机是由国际公司美国通用电气与法国SNECMA各以50%资金比例合资建立的大型客机发动机生产商CFM国际公司研制的大型喷气客机发动机。它采用了18片赛峰公司研制的碳纤维复合材料风扇叶片以及美国通用电气公司研制的陶瓷基复合材料涡轮部件。
它采用了许多行业内领先的创新性技术,包括超高压比核心机、采用三维编织树脂模传递成型技术制造的复合材料风扇叶片、复合材料风扇机匣、第三代三维气动设计压气机和涡轮叶片设计技术、第二代双环预混旋流器(TAPS II)燃烧室技术、可变面积外涵喷管和先进材料等。发动机和短舱将作为一体化推进系统来设计,拥有先进的进气道、声学处理和电动反推力装置,可以充分发挥其气动性能、重量和声学优势。
这款先进的新型涡扇发动机较CFM之前生产的波音737的发动机有了许多先进性提升。LEAP-X1C发动机燃油消耗可减少16%,二氧化碳排放量可减少16%,氮氧化物排放量可减少至不足60%,且更为安静。相比于其他发动机,LEAP-X运营成本可以比其他发动机降低15%,这是一项巨大的优势,这也是最终选定LEAP-X系列发动机作为动力装置的最重要原因。
航空发动机(图片来源于网络)
为啥发动机不是国产的?
有人会问,C919的发动机为啥不用国产的呢?航空发动机的研制都有哪些难题呢?
中国的现代化工业起步比国外晚,技术也比较落后,这让中国的航空发动机水平和中国航空整体水平相比比较低,这个短板影响了整个航空工业的实力。而我国在大飞机的发动机上落后很久,上世纪轰动一时的运10所用发动机就是波音707所用JT3D-7发动机。当时虽然已经开始着手研制我国自己的发动机,但是因为种种原因运10下马,科研资料全部销毁,致使我国发动机事业停滞不前。
难点1:四高
简单而言,喷气式飞机发动机就像是一个两端都开口的圆筒,从前端吸入的空气经过压气机、燃烧室等一系列的内部结构,而后变为高温、高速的燃气从后端喷射出去,就产生了向前的反推力。所以,飞机发动机的特点是“高温、高压、高转速、高负荷”。
这四高,简直是个大难题。一般喷气发动机内部某些部位的温度在1600℃左右,而发动机风扇后的压气机进口空气和出口空气的压强都要比大气压强要高得多。
与发动机相比,大飞机用的大涵道与发动机和战斗机的小涵道又有不同,所谓涵道比就是发动机外涵道与内涵道之比,抛开种种晦涩的技术细节不谈,普通人能够直观明白的是,大涵道比发动机比小涵道比发动机的油耗小、推进效率好、经济性能高,不过制造要求也更高,稳定性更强,比如前者的风扇叶片起码有一米多,而后者则只需0.3—0.4米左右。
拿一款非常高端的发动机来说,罗尔斯·罗伊斯公司为A380生产的发动机内部的最高温度达到了太阳表面的一半,发动机内部的压力达到了50个大气压,涡轮叶片叶尖的运动速度达到2000公里/小时,而它的叶片有3米多长。这四高两低简直是制造民用大飞机发动机的紧箍咒。
难点2:经济性与舒适度
除了四高难题以外,民用客机的发动机还必须考虑经济性能和舒适度,也就是说,油耗要低,噪音也要低。而这些林林总总的问题也正导致了我国飞机发动机发展缓慢。
难点3:发动机的材料和工艺
此外,材料和工艺难题也是不能忽略的,要保持燃油火焰在以每秒100多米高速流动的高压气流中稳定燃烧,这与在狂风中保证手中火炬不灭一样困难;同时要保护燃烧室火焰筒壁不被高温燃气烧蚀,不仅需要耐高温材料和耐热涂层,还要通过燃烧室结构设计,采取冷却手段,降低燃烧室筒壁温度。
目前国外发达国家的发动机主轴承的寿命都在1万小时以上,而我国的基本在900小时以内,差距还很大。而现代高性能航空发动机都采取一些高强度、耐高温材料,包括钛、镍、铝、复合材料以及镍基和钴基超耐热合金。有分析认为,中国现在超耐热合金还不能完全自给,据估计中国每年超耐热合金的生产量约为10000吨,而需求量则为20000吨。更有专家指出,制造发动机风扇的复合材料目前国内做不出来。
机上电子设备
C919采用了双侧杆正杆飞行控制系统,其特色在于采用两种不同构型的4个独立主飞行控制系统。其中包括两个常规液压动作系统和两个电-液动作系统。C919采用电-液动作系统,这使其在动力资源上具备更大的灵活性,增加了冗余性,提高了安全性能。针对先进的气动布局、结构材料和机载系统,研制人员共规划了102项关键技术攻关,包括飞机发动机一体化设计、电传飞控系统控制律设计、主动控制技术等。
与此同时,C919在机内采用先进的电传操纵和主动控制技术,提高飞机综合性能,改善人为因素和舒适性;另外,先进的综合航电技术减轻了飞行员负担,提高导航性能,改善人机界面。
但必须承认的是,C919上也有很多设备是现在甚至是较长时间内,国内都无法提供具备竞争力产品的类型。一个典型例子就是机载液压系统。飞机上的各个气动舵面偏转、舱门和起落架的收放等等,无不依赖于液压系统的驱动——这个以极小的体积和重量,就能传递极大的功率的神奇设备。
C919首飞意味着什么?
航空制造业差不多代表了一个国家制造业的顶尖水平,我国在上世纪放弃了运-10计划导致国内航空制造业十年的断档和大量的人才流失,此次首飞标志着我国的大飞机制造业重新崛起。
有人说,我们只是造一个壳子把所有的东西塞进去。但这正是我们所取得最大进步所在,航空制造业与其他制造业的有一个不同之处就在于集成的难度,飞机特别是商用的大飞机,讲究耐用率与经济性,这就带来了对气动布局的近乎苛刻的要求,既要有可靠的结构强度同时又要做到尽可能轻便,而一个气动布局所涉及到超算模型与风洞模拟,又不是一般小国家可以做到的体系化建设。可以说造出一个壳子是一个系统的工程,考验的是一个国家的完整工业体系与庞大的工程师队伍。
在全球化的时代里,一味讲究国产率实际上并没有太多的价值,737和A380上面也有不少零件来自于中国制造商。C919使用了美法合资CFM公司的LEAP-1C的发动机,其实波音与空客的飞机也用了这个发动机,C-919用了它可以消耗比同级别飞机少15%的燃油,降低10%的座公里直接使用成本,还可以减少50%的碳排放量,别人的好东西可以拿来用为什么不用呢?
当然这也不意味着我们可以不必发展发动机,C919的航电、飞控、空气管理系统供货商均为欧美公司,这些关键技术上面我们尚还没有能力做出和西方欧美公司一个水准的产品,但是只要我们可以利用他们的技术造出我们的飞机,并且可以投入运营并盈利,自然会有国内的厂家来研发我们自己的航电、飞控系统,如果一蹴而就全部国产,可能带来的结果是C919项目的失败,这会导致国民对整个国产飞机产业链失去信心,国产飞机失去市场,行业逐渐崩溃,想要再一次打开市场,困难可想而知。
C919以高达百分之五十的国产率下架,打破了欧美在大型客机领域的垄断地位,是超出预期的成功。作为一款商业用途的飞机,大量使用国际一流的发动机与航电、飞控技术以增强稳定性,并以此加大通过美欧主导的适航认证的概率,更为之后的国产化积累了经验。
“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。
本文由科普中国融合创作出品,转载请注明出处。
飞机制造行业的现状和发展趋势如何?
综观飞机制造业近百年的历史,尤其是近几十年来的发展史,飞机制造技术的发展由民用运输和军事用途强烈需求所牵引,并受到世界经济和科学技术发展的推动,形成了今天飞速发展和广泛应用的局面。�
冷战时代的军备竞赛,刺激了军事工业,尤其是飞机制造业的发展。为了研制高性能新型战机、大型军用运输机、特种军用飞机和武装直升机,各国政府和军方不断推出新的研究计划,投入巨额资金,开发先进制造技术及其专用设备,基本建立了飞机先进制造技术发展的基础。�
随着世界经济较长时期的衰退,各国航空公司利润急剧下降,直接影响到飞机制造商。因此,他们为了生存,降低飞机全寿命周期内的成本就成为了新一代民机研制的一个重要指标和先进制造技术的发展方向。�
冷战结束后,各国大量削减国防经费,军方难以承受高性能武器装备的高昂采购费用,如F-22战斗机每架1.6亿美元。如此高昂的采购费,限制了该飞机的生产数量,因此美国军方提出研制买得起的飞机——JSF联合攻击机(每架约3亿美元)作为相应的补充。军机的研制生产也提出了高性能和全寿命周期低成本的双重目标。�
计算机技术的不断发展,精益生产等许多新理念的诞生,使得飞机先进制造技术处于不断变革之中,传统技术不断精化,新材料、新结构加工、成形技术不断创新,集成的整体结构和数字化制造技术构筑了新一代飞机先进制造技术的主体框架。为了进一步了解国外飞机先进制造技术发展的这一趋势,本文介绍几种主要制造技术(本站节选其中的《先进数控加工技术》)。
西方工业发达国家飞机制造业应用数控技术始于60年代。近50年的数控技术发展中,发达国家飞机制造业中数控技术发展现状和应用水平主要体现在以下几个方面:基本实现机加数控化、广泛采用CAD/CAPP/CAM系统和DNC技术,达到数控加工高效率,建立了柔性生产线和发展了高速切削加工技术。�
1 基本实现了机加数控化
发达国家数控机床占机床总数的30%~40%,而航空制造业更高,达到50%~80%。波音、麦道等飞机制造公司都配置了数量可观的各种不同类型的先进数控设备,特别是大型、多坐标数控铣和加工中心,同时与之相关的配套设备齐全,数控化率高,基本实现了机加数控化。�
波音公司在Auburn民机制造分部建立了铝、钛、钢结构件机加车间和机翼蒙皮与梁结构件机加车间,机加设备362台,配置NC机床约180台,数控化率达50%。�
在90年代中后期,这些公司仍在进一步加强对机加设备进行技术改造和更新,特别是多坐标高速数控铣床和加工中心。如波音公司在Wichita军机制造分部就新配有法国Forest Line公司43m×3m×2m高架3龙门5坐标Minumac 30TH 数控铣床,加工“空中客车”飞机结构件的英国航宇(BAe)、原德国汉堡DASA公司、负责贝尔直升机结构件制造的Remele公司等都配有数量不等的法国Forest Line公司的高速5坐标龙门铣床。其中Remele公司多达6台,主轴功率40kW,转速40000r/min,可加工零件壁厚薄到0.76mm。同时还配有Fischer机床头,主轴功率75kW,转速5000r/min,可加工尺寸很大的机翼壁板,切削效率很高。贝尔直升机公司还添置了美国费城Marwin公司用于加工飞机结构件的Automax IV双主轴5坐标高速加工中心,规格为20m×8m×9m,主轴转速24000r/min,进给速度�20m/min�。�
2 数控加工效率高
发达国家飞机制造公司数控技术应用水平高。表现在:不仅数控设备利用率高(一般达80%),主轴利用率高(95%),且加工效率极高,加工周期短,劳动生产率是我国的20~40倍。大型机翼整体加工件加工效率约50kg/h。麦道公司制造C-17军用运输机起落架舱隔框,加工效率约30kg/h。�
[pagecute]
3 广泛应用先进的CAD/CAPP/CAM系统
广泛应用CAD/CAPP/CAM/CAE自动化设计制造应用软件以及DFX等并行工程,并有足够的工艺知识数据库、切削参数数据库、各种规范化的技术资料作为使能工具。因而设计与工艺手段先进,工艺精良,NC加工程序优质,缩短了工艺准备周期,提高了设备利用率和生产效率,大大缩短了零件生产周期。�
4 DNC技术广泛应用
发达国家飞机制造公司大多数在70年代末80年代就已经广泛地应用了分布式数字控制技术(Distributed NC,DNC)。波音公司在Wichita 军机分部建立的一个DNC系统,大约连接有分布在若干不同车间中的130多台数控设备, 包括加工中心、大型铣床、数控测量机。麦道、MBB和extron工厂等都建立了DNC系统。美国大约有2万多家小型飞机零部件转包制造商,60%~80%都使用了DNC系统。采用DNC技术具有明显的经济和技术效益,通常可提高生产率15%~20%。�
5 高速切削技术的应用
高速加工(High Speed Machining,HSM)被认为是21世纪机加工艺中最重要的手段。高速切削与常规切削相比具有明显优点:加工时间减少约60%~80%,进给速度提高5~10 倍,材料去除率提高3~5倍,刀具耐用度提高70%,切削力减少约30%,表面粗糙度Ramax可达8~10μm,工件温升低,热变形、热膨胀减小,适宜加工细长、复杂薄壁零件等。
飞机大型复杂整体结构件采用高速数控加工技术是近几年飞机机加技术发展的一种趋势。因此,20世纪90年代中后期,飞机制造商添置了许多先进的多坐标高速数控铣和加工中心用于铝、钛、钢等材料的各种整体结构件加工。波音Bertsche Engineering公司的高速加工中心,用于航空航天铝合金、复合材料零件的加工。
对铝合金高速加工,切削速度可达2000~5000m/min,主轴转速达10000~40000r/min,加工进给速度为2~20m/min ,材料去除率30~40kg/h。�
高速切削加工技术对机床、刀具、控制系统、编程等都提出了更高的要求。发达国家对高速加工的配套技术研究和应用作为一个系统工程看待,解决得较好,并在不断完善。�
6 应用高自动化水平的制造系统
发达国家飞机制造公司非常重视应用高自动化水平的制造系统,提高新飞机研制生产能力,加强企业竞争力。70年代末80年代先后建立了柔性制造系统(FMS)用于飞机结构件柔性加工,在新机研制中发挥了重要作用。90年代中后期,由于高速切削机床技术的发展和进步,飞机整体加工件的增多,开始较广泛应用柔性加工单元或以柔性加工单元组成柔性生产线来加工飞机整体结构件(在汽车制造业领域也同样得到应用)。如波音Wichita军机分部用高速加工单元组成的柔性加工生产线来加工飞机整体隔框零件。达索飞机公司在“阵风”号飞机制造中也建立了一条柔性加工生产线,由4台5坐标切削中心构成,配有自动化工件装卸小车,容量达1000的机械手控制的工具库,只需配备一个操作者。
西方发达国家不仅重视发展数控主体技术,并注重协调发展与数控技术配套的各单元自动化技术,包括数控车间信息管理系统,从而使得数控技术得以快速发展并达到了很高的应用水平,有力地推动了飞机制造业发展和进步。目前,发达国家飞机制造商不仅实现了高效数控加工,而且实现了数字化设计(D-D)和数字化制造(D-M)。
简述民用航空服务的含义和特点
民用航空,是指使用航空器从事除了国防、警察和海关等国家航空活动以外的航空活动,民用航空活动是航空活动的一部分,同时以“使用”航空器界定了它和航空制造业的界限,用“非军事等性质”表明了它和军事航空等国家航空活动不同。《国内投资民用航空业规定(试行)》已于2005年8月15日起正式实施。
20世纪50年代以来,民用航空的服务范围不断扩大,成为一个国家的重要经济部门。商业航空的发展主要表现在客货运输量的迅速增长,定期航线密布于世界各大洲。由于快速、安全、舒适和不受地形限制等一系列优点,商业航空在交通运输结构中占有独特的地位,它促进了国内和国际贸易、旅游和各种交往活动的发展,使在短期内开发边远地区成为可能。
通用航空在工、农业方面的服务主要有航空摄影测量、航空物理探矿、播种、施肥、喷洒农药和空中护林等。它具有工作质量高、节省时间和人力的突出优点。直升机在为近海石油勘探服务和空中起重作业中也具有独特的作用。在一些航空发达的国家,通用航空的主要组成部分是政府机构和企业的公务飞行和通勤飞行。这是由于航空公司的定期航线不能满足这种分散的、定期和不定期的需要而兴起的飞行。此外,通用航空还包括个人的娱乐飞行、体育表演和竞赛飞行。
民用航空的基本要求是安全可靠,对商业航空的客运和通用航空的通勤、公务飞行来说,还要求准时和舒适。
扩展资料
航空运输作为民用航空的一个部分划分出去之后,民用航空的其余部分统称为通用航空,因而通用航空包罗多项内容,范围十分广泛,可以大致分为下列几类:
(l)工业航空:包括使用航空器进行工矿业有关的各种活动,具体的应用有航空摄影、航空遥感、航空物探、航空吊装、石油航空、航空环境监测等。在这些领域中利用了航空的优势,可以完成许多以前无法进行的工程,如海上采油,如果没有航空提供便利的交通和后勤服务,很难想像出现这样一个行业。其他如航空探矿、航空摄影,使这些工作的进度加快了几十倍到上百倍。
(2)农业航空:包括为农、林、牧、渔各行业的航空服务活动。其中如森林防火、灭火、撒播农药,都是其他方式无法比拟的。
(3)航空科研和探险活动:包括新技术的验证、新飞机的试飞,以及利用航空器进行的气象天文观测和探险活动。
(4)飞行训练:除培养空军驾驶员外培养各类飞行人员的学校和俱乐部的飞行活动。
(5)航空体育运动:用各类航空器开展的体育活动,如跳伞、滑翔机、热气球以及航空模型运动。
(6)公务航空:大企业和政府高级行政人员用单位自备的航空器进行公务活动。跨国公司的出现和企业规模的扩大,使企业自备的公务飞机越来越多,公务航空就成为通用航空中一个独立的部门。
(7)私人航空:私人拥有航空器进行航空活动。
关于《航空业包括航空制造业》的介绍到此就结束了。