【简介:】本篇文章给大家谈谈《飞机机翼哪里先失速后落地》对应的知识点,希望对各位有所帮助。本文目录一览:
1、如何改出飞机失速?
2、什么是失速?
3、为什么翼根先失速
4、就翼
本篇文章给大家谈谈《飞机机翼哪里先失速后落地》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、如何改出飞机失速?
- 2、什么是失速?
- 3、为什么翼根先失速
- 4、就翼型引起的失速位置来说,到底是梯形翼产生的的翼尖先失速好,还是矩形翼产生的的翼根先失速好?
- 5、在你看来,什么是失速?为什么?
- 6、关于飞行员的问题
如何改出飞机失速?
失速:失速是当机翼攻角(迎角)增大到一定的程度(临界迎角)后,机翼上表面气流分离,导致升力减小所发生的现象。飞机将低头下沉,直至获得足够升力飞行。在高度低时发生失速是危险的,高度足够高时,可以练习失速的改出,改出失速的基本操作是迅速推杆到底采用俯冲姿态,等速度大于等于1.3倍失速速度时,缓慢向后拉杆改出至平飞。
尾旋(螺旋):当一侧机翼先于另一侧机翼失速时,飞机会朝先失速的一侧机翼方向沿飞机的纵轴旋转,称为螺旋或尾旋。发生螺旋式非常危险的事情,有些飞机在设计制造时是禁止飞机进入螺旋的,这样的飞机进入螺旋姿态后,很难改出。可以改出的飞机改出尾旋的基本方法是推杆到底,并向相反方向拉杆,如果发动机以高速运转,必须立即收油门到慢车,向螺旋相反方向蹬满舵,螺旋停止后,使用失速改平的方法。成功的关键是飞行员的技术和飞机的性能。
什么是失速?
机翼在攻角超过某个临界值后,举力系数(见举力)随攻角增大而减小的现象。当失速时,飞机会产生失控的俯冲颠簸运动,发动机发生振动,驾驶员感到操纵异常。在攻角不太大时,机翼的举力系数CL随攻角a的增大而直线增大,这时,机翼上边界层基本没有分离。但当攻角大到一定程度后,机翼的上翼面出现较大的分离区,CL随a增大的幅度减小,当a达到某个临界值时,举力系数达最大值CLmaxo这时攻角再增大,上翼面气流出现严重分离,举力系数不但不增加,反而下降。机翼在CLmax附近的性能称为失速性能。机翼的失速性能与翼型、机翼平面形状等因素有关。研究表明,翼型有三种失速形式:后缘分离、前缘长气泡分离和前缘短气泡分离。一般说来,对于较厚的翼型(例如厚度在12%以上),气流从后缘开始分离。随着攻角增大,分离区逐渐向前扩展,在cLmax附近,CL随a的变化较平缓。对于前缘半径很小的薄翼型,当攻角不很大时,在翼型前缘形成分离气抱。视翼型和雷诺数不同,前缘气泡有长泡和短泡之分,长抱只发生在很薄的翼型上,在雷诺数很大时,发生短泡分离的可能性很小。长泡开始时约占弦长的2~3%,随着a增大而逐渐拉长,失速时,CL随a的变化较平缓。短泡的长度只有弦长的0.5~1%,开始时随a增大而变小,对举力影响不大。当a超过临界攻角时,短泡突然破裂,翼型的举力系数CL突然下降。机翼的失速性能除与翼型有关外,与机翼平面形状的关系也很大。矩形机翼在翼身联结的根部最先失速,梢根比(机翼翼梢弦长与翼根弦长之比)大的梯形机翼在翼梢先失速,后掠机翼也在翼梢先失速。这些不同的失速性能与飞机的设计有密切关系。
为什么翼根先失速
矩形翼的翼尖有翼尖涡流,造成翼尖处气流下洗作用最强,翼根处气流下洗作用最弱,因此在同一个迎角下,翼根的有效迎角比翼尖的有效迎角大,所以翼根先失速。
但这只是矩形翼这样,梯形翼是翼尖先失速,椭圆翼是同时失速
就翼型引起的失速位置来说,到底是梯形翼产生的的翼尖先失速好,还是矩形翼产生的的翼根先失速好?
翼根失速升力损失大,焦点移动大,翼尖失速损失操纵性,各有各的优劣。
但一般来说保持飞机的操纵性更为重要,因此翼尖先失速会比较危险。
不过具体情况也要具体分析,飞机设计是需要取舍的。
在你看来,什么是失速?为什么?
机翼在攻角超过某个临界值后,举力系数(见举力)随攻角增大而减小的现象。当失速时,飞机会产生失控的俯冲颠簸运动,发动机发生振动,驾驶员感到操纵异常。在攻角不太大时,机翼的举力系数CL随攻角a的增大而直线增大,这时,机翼上边界层基本没有分离。但当攻角大到一定程度后,机翼的上翼面出现较大的分离区(图1),CL随a增大的幅度减小,当a达到某个临界值时,举力系数达最大值CLmaxo这时攻角再增大,上翼面气流出现严重分离,举力系数不但不增加,反而下降(图2)。机翼在CLmax附近的性能称为失速性能。机翼的失速性能与翼型、机翼平面形状等因素有关。研究表明,翼型有三种失速形式:后缘分离、前缘长气泡分离和前缘短气泡分离。一般说来,对于较厚的翼型(例如厚度在12%以上),气流从后缘开始分离(图1a)。随着攻角增大,分离区逐渐向前扩展,在cLmax附近,CL随a的变化较平缓(图2中的曲线a)。对于前缘半径很小的薄翼型,当攻角不很大时,在翼型前缘形成分离气抱(图1b)。视翼型和雷诺数不同,前缘气泡有长泡和短泡之分,长抱只发生在很薄的翼型上,在雷诺数很大时,发生短泡分离的可能性很小。长泡开始时约占弦长的2~3%,随着a增大而逐渐拉长,失速时,CL随a的变化较平缓(图2中的曲线b)。短泡的长度只有弦长的0.5~1%,开始时随a增大而变小,对举力影响不大。当a超过临界攻角时,短泡突然破裂,翼型的举力系数CL突然下降(图2中的曲线c)。机翼的失速性能除与翼型有关外,与机翼平面形状的关系也很大。矩形机翼在翼身联结的根部最先失速,梢根比(机翼翼梢弦长与翼根弦长之比)大的梯形机翼在翼梢先失速,后掠机翼也在翼梢先失速。这些不同的失速性能与飞机的设计有密切关系。
关于飞行员的问题
失速:失速是当机翼攻角(迎角)增大到一定的程度(临界迎角)后,机翼上表面气流分离,导致升力减小所发生的现象。飞机将低头下沉,直至获得足够升力飞行。在高度低时发生失速是危险的,高度足够高时,可以练习失速的改出,改出失速的基本操作是迅速推杆到底采用俯冲姿态,等速度大于等于1.3倍失速速度时,缓慢向后拉杆改出至平飞。
尾旋(螺旋):当一侧机翼先于另一侧机翼失速时,飞机会朝先失速的一侧机翼方向沿飞机的纵轴旋转,称为螺旋或尾旋。发生螺旋式非常危险的事情,有些飞机在设计制造时是禁止飞机进入螺旋的,这样的飞机进入螺旋姿态后,很难改出。可以改出的飞机改出尾旋的基本方法是推杆到底,并向相反方向拉杆,如果发动机以高速运转,必须立即收油门到慢车,向螺旋相反方向蹬满舵,螺旋停止后,使用失速改平的方法。成功的关键是飞行员的技术和飞机的性能。
关于《飞机机翼哪里先失速后落地》的介绍到此就结束了。