【简介:】本篇文章给大家谈谈《》对应的知识点,希望对各位有所帮助。本文目录一览:
1、机场运行最低标准的制定与实施规定
2、航空器机场运行最低标准的制定与实施规定的第四章 实施
本篇文章给大家谈谈《》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、机场运行最低标准的制定与实施规定
- 2、航空器机场运行最低标准的制定与实施规定的第四章 实施仪表飞行程序和最低标准的规定
- 3、中国民用航空仪表着陆系统Ⅱ类运行规定
- 4、空军新学员展开大航线飞行训练!你知道什么是仪表飞行吗?
机场运行最低标准的制定与实施规定
第一章 总则第一条 为了提高民用运输飞机全天候运行的安全水平和航行的标准化程度,按统一准则制定机场运行最低标准和实施程序,特制定本规定。第二条 本规定是对所有已建立仪表飞行程序的民用机场和军民合用机场,制定民用运输飞机使用的机场运行最低标准的准则,也是各运输航空公司对所用的机场确定公司运行的最低标准和制定实施细则的依据。第三条 定义,在本规定中使用的名词有以下的意义:
精密进近——使用仪表着陆系统(ILS)、微波着陆系统(MLS)、或精密进近雷达(PAR)提供方位和下滑引导的进近为精密进近。
非精密进近——使用全向信标台(VOR),导航台(NDB)或航向台(LLZ)(ILS下滑台不工作)等地面导航设施,只提供方位引导,不具备下滑引导的进近为非精密进近。
机场运行最低标准——一个机场可用于起飞和着陆的限制,对于起飞,用能见度(VIS)或跑道视程(RVR)表示,如果需要还应包括云高;对于精密进近的着陆,根据运行分类用VIS或RVR和决断高(DH)表示;对非精密进近,用能见度(VIS)、最低下降高(MDH)和云高表示。
超障高(OCH)——按照有关超障余度的准则而确定的最低高。
决断高(DH)——在精密进近中规定的高,在这个高度如果不能取得继续进近所需的目视参考必须开始复飞。
最低下降高(MDH)——在非精密进近或盘旋进近中规定的高,在这个高度如果没有取得所要求的目视参考,则不能下降至最低下降高以下。
云高——在6000米以下遮蔽半个以上天空的最低云层底部离地面的高度。
能见度(VIS)——在白天能看到如辨别出明显的不发光物体,晚上能看到明显的发光物体的距离。
跑道视程(RVR)——飞机在跑道中线上驾驶员能看到跑道道面标志或跑道边灯或中线灯的最大距离。
直线进近——最后进近航迹与着陆跑道中线延长线的交角在30度以内的仪表进近。
盘旋进近——为仪表进近程序的延续,航空器在仪表进近程序中不能直线进近着陆时,着陆前在机场上空进行目视对正跑道的机动飞行。
“故障—性能下降”的自动着陆系统——故障—性能下降的自动着陆系统发生故障时,飞机的俯仰配平和航径姿态没有显著偏差,但是不能完成自动着陆。
“故障—工作”的自动着陆系统——故障—工作的自动着陆系统发生故障时,进近拉平和着陆能用着陆系统的其余部分完成。
精密进近和着陆的运行分类:
Ⅰ类(CAT Ⅰ)运行
决断高不低于60米(200英尺),能见度不小于800米或跑道视程不小于550米的精密仪表进近和着陆。
Ⅱ类(CAT Ⅱ)运行
决断高低于60米(200英尺),但不低于30米(100英尺),跑道视程不小于350米的精密进近和着陆。
ⅢA类(CAT ⅢA)运行
决断高低于30米(100英尺)或无决断高,跑道视程不小于200米的精密进近着陆。
ⅢB类(CAT ⅢB)运行
决断高低于30米(100英尺),或无决断高,跑道视程小于200米,但不小于50米的精密进近和着陆。
ⅢC类(CAT ⅢC)运行
无决断高和无跑道视程限制的精密进近和着陆。第四条 对于已建立仪表进近程序的机场,应对每个程序的直线进近,盘旋进近按飞机分类规定着陆最低标准,对仪表起飞离场规定起飞最低标准,对备降机场规定备降最低标准。第五条 确定机场运行最低标准必须充分考虑以下因素:
(一)飞机的机型、性能和操纵特性;
(二)飞行组的组成及其技术水平和飞行经验;
(三)所用跑道的尺度和特性;
(四)可用的目视助航和无线电导航设施的性能和满足要求的程度;
(五)在进近着陆和复飞过程中可用于领航和飞行操纵的机载设备;
(六)在进近区和复飞区内的障碍物和仪表进近的超障高;
(七)用于气象测报的设备;
(八)爬升区内的障碍物和必要的超障余度。第六条 民航局公布的机场运行最低标准没有考虑具体机型的机载设备、飞机性能、飞行机组技术水平和飞行经验。这些因素应由各航空公司确定公司使用的机场运行最低标准时予以考虑。
航空器机场运行最低标准的制定与实施规定的第四章 实施仪表飞行程序和最低标准的规定
第六十八条 当观测到的跑道起飞方向的能见度或跑道视程低于规定的起飞最低标准时,机长不得开始起飞。
第六十九条 起飞最低标准为跑道最初部分起飞滑跑的能见度。气象能见度低于800米的天气条件均以跑道视程为准。
第七十条 对于没有跑道视程(RVR)报告的跑道,可以由人工观测或者由驾驶员在跑道中线上计数跑道边灯或中线灯计算跑道能见度,确定观察条件是否满足起飞要求。
第七十一条 如果报告的气象能见度低于起飞最低标准,而且没有RVR报告,只有在机长能够确定沿起飞跑道方向能见距离等于或大于要求的最低标准时,才能开始起飞。
第七十二条 如果多发飞机的性能允许飞机在起飞速度达到决断速度(V1)后一发失效继续起飞并能按照要求的超障余度飞行至起飞备降场,则可以使用机场图中提供的起飞最低标准。
第七十三条 如果多发飞机的性能不符合第七十二条要求,在一发失效后需要回场着陆,并且要求能够看到和避开起飞区内的障碍物,则起飞最低标准至少要等于着陆最低标准。
第七十四条 使用跑道视程(RVR)低于400米的起飞最低标准应当满足以下条件:
(一)机场低能见度程序在实施中;
(二)跑道灯,包括间距30米的中线灯、间距60米的边灯在工作中。在跑道视程(RVR)低于200米时,中线灯间距不大于15米;
(三)飞行机组成员圆满完成为低能见度程序批准的模拟机训练;
(四)在开始起飞滑跑时,从驾驶舱能看到间隔15米的8个中线灯的目视段,或间隔30米的5个中线灯的目视段;
(五)所有有关的跑道视程(RVR)报告点已按下列规定达到要求的跑道视程(RVR)数值:
1、B、C类飞机必须有接地区和跑道中部两个位置的跑道视程(RVR)报告;
2、D类飞机必须有接地区、跑道中部和跑道停止端三个位置的跑道视程(RVR)报告。 第七十五条 如果在飞越最后进近定位点(FAF)或最后进近点(FAP)之前,报告的跑道视程(RVR)或能见度(VIS)低于程序规定的着陆最低标准,机长不得飞越最后进近定位点(FAF)或最后进近点(FAP)继续进近。如果在飞越最后进近定位点(FAF)或最后进近点(FAP)之后,报告的跑道视程(RVR)或能见度(VIS)减至规定的着陆最低标准以下,则机长可以继续进近至决断高度/高(DA/DH)或者最低下降高度/高(MDA/MDH)。
如果程序中没有规定最后进近定位点(FAF),在报告的跑道视程(RVR)或能见度(VIS)低于规定的着陆最低标准时,则机长不得开始最后航段飞行。
第七十六条 飞机到达决断高度/高(DA/DH)或者在非精密进近到达最低下降高度/高(MDA/MDH)后至复飞点前,飞机处在正常下降着陆位置上,飞行能见度不低于程序规定的最低标准,并且已取得要求的目视参考,则可以继续下降至决断高度/高(DA/DH)或者最低下降高度/高(MDA/MDH)以下。
第七十七条 在精密进近或非精密进近中,当飞机到达决断高度/高( DA/DH)或者最低下降高度/高( MDA/MDH)时,不论天气报告如何,如果不能取得外界目视参考或者不能充分保证成功地进近着陆,或者考虑到可用的目视参考,飞机相对于着陆航径的位置可能危及成功的进近着陆,则必须强制实施复飞。
第七十八条 除非报告的能见度等于或者大于目视盘旋程序规定的最低能见度,并已按本章第三节规定取得和保持所需的目视参考,机长不得开始目视盘旋程序。对于非精密进近,应当保持进近航迹和最低下降高度/高(MDA/MDH)至复飞点开始复飞程序;对于仪表着陆系统(ILS)进近,则使用下滑道(GP)不工作规定的复飞点开始复飞程序。
第七十九条 在飞机脱离仪表进近航迹实施目视机动飞行过程中,应当持续看到跑道或其他能识别跑道的标志,飞机离开跑道的距离应当严格限制在飞机对正最后进近要求的距离,并保持在规定的最低下降高度/高飞行。机长只有在盘旋飞行至接近跑道轴线时才能开始最后下降,使用的下降梯度应当等于但不得小于正常的下降梯度。
第八十条 在进近过程中任何时候飞机到达最低下降高度/高(MDA/MDH)或者决断高度/高(DA/DH)以前,如果遇到严重颠簸,或者由于机载或地面设备故障而导致进近不稳定时,不得再继续进近。
第八十一条 在非精密进近中规定的复飞点至跑道入口的距离较长时,任何时候机长下降至最低下降高度/高飞越复飞点以前,必须确信下降过程中不会失去目视参考,才允许下降至最低下降高度/高以下,如有任何怀疑,必须在复飞点果断复飞。
第八十二条 对于Ⅱ类精密仪表跑道,如果机组没有获得在规定位置的跑道视程报告,则不得实施Ⅱ类运行。 第八十三条 仪表进近的目视飞行阶段,应当有充分的地面特征,以保证驾驶员能够正确和立即判明飞机相对于着陆航迹的位置,并且必须给予驾驶员用作横向操纵所需的要素,例如进近灯、跑道灯。
第八十四条 在Ⅰ类精密进近,规定的目视参考应当包括横排灯或者入口灯,并且至少应当有6个连续的进近灯、跑道灯或者两者的组合。
第八十五条 在非精密进近,如无进近灯,规定的目视参考应当包括接地点。如有进近灯,则不要求在最低下降高度/高看到接地点,但在看到横排灯或者入口灯之外至少应当看到7个连续的进近灯、跑道灯或者两者的组合。
第八十六条 目视盘旋的目视参考是指驾驶员能持续看到地面,使之能确定飞机相对于跑道的位置,并保持在规定的目视盘旋区内。 第八十七条 每个仪表进近图中规定的最低扇区高度,在以无方向性无线电信标台(NDB)或者甚高频全向信标台(VOR)为中心,以46千米为半径的范围内应当提供至少300米(平原和丘陵地区)或者600米(山区)的超障余度。如果进场飞机已确定飞机位置在扇区范围内,则可以下降至进场航线最低高度或者最低扇区高度飞行;但在使用进场航线最低高度时,不允许偏离规定的进场航线。
第八十八条 如果进场飞机不必要在等待航线等待或者消失高度,只要驾驶员已经确知飞机处在建立扇区的NDB或VOR台为中心的46千米范围以内,飞行高度不低于最低扇区高度,则飞机可以在过台以前切入所需航迹。
第八十九条 仪表进近程序中规定的转弯高度、飞越最后进近定位点(FAF)、梯级下降定位点或者转弯点的高度均为程序规定的高度,飞机在飞越这些定位点以前不得下降至为各定位点规定的高度以下。在非精密进近,如果飞机在到达最后进近定位点(FAF)或梯级下降定位点以前已下降至规定的高度,则应当保持这个高度飞越定位点后再转入下降。
第九十条 非精密进近只提供航迹引导,驾驶员必须根据程序中规定的最后进近下降梯度和飞机的地速,在进近图的附表中求得所需的下降率,并按此下降率下降至最低下降高度/高。
第九十一条 非精密进近规定飞机最后进近至最低下降高度/高转为目视,驾驶员在未取得所需目视参考和飞机处在正常目视下降着陆位置之前,不得下降至最低下降高度/高以下。在这种情况,飞机应当保持最低下降高度/高(MDA/MDH)飞向复飞点,如果到达复飞点以前仍不能转为目视,则应当在复飞点按复飞程序复飞。
精密进近至决断高,如果不能取得所需的目视参考,必须立刻复飞。 第九十二条 仪表着陆系统(ILS)空间信号由于受地面建筑物、飞机的反射或者受到电磁波的干扰时应当按照下列规定降级使用:
(一)如果Ⅱ类仪表着陆系统(ILS)航道信号降至Ⅰ类性能,不得进行Ⅱ类进近;如果Ⅱ类仪表着陆系统(ILS)下滑道信号降至Ⅰ类性能,只能进行Ⅰ类进近,使用Ⅰ类进近着陆最低标准。
(二)如果Ⅲ类仪表着陆系统(ILS)航道信号降至Ⅱ类性能,不得使用Ⅲ类运行最低标准;如果Ⅲ类仪表着陆系统(ILS)下滑道信号降至Ⅱ类性能,只能进行Ⅱ类进近,使用Ⅱ类进近着陆最低标准。
第九十三条 仪表着陆系统(ILS)地面下滑台不工作,则按照非精密进近实施,使用仪表着陆系统(ILS)下滑台不工作的着陆最低标准;如果仪表着陆系统(ILS)地面航向台(LLZ)不工作,则不允许使用仪表着陆系统(ILS)进近。
第九十四条 仪表着陆系统(ILS)航向台/下滑台的备用发射机不工作,Ⅱ类运行允许进近至决断高(DH)建立目视,用手操纵着陆。如果在决断高(DH)不能建立目视参考,则应当立即复飞。仪表着陆系统(ILS)备用发射机不工作时,不允许作Ⅲ类运行。
第九十五条 接地区跑道视程(RVR)设备不工作,对Ⅱ、Ⅲ类运行,可以由跑道中部的跑道视程(RVR)报告代替,也可以由人工观测跑道着陆方向的能见距离代替。这种替代也适用于Ⅰ类运行。 第九十六条 进近灯临时发生故障不工作时,Ⅰ类进近应当按照附件一1.2.2节的规定增加能见度或者跑道视程。Ⅱ类和Ⅲ类决断高(DH)大于15米的进近着陆不允许进近灯不工作。一旦进近灯完全熄灭,则应当按照Ⅰ类进近使用基本设施的着陆最低标准。
第九十七条 部分进近灯不亮,进近灯工作的长度从入口起只有420米,对Ⅱ类和Ⅲ类运行无影响,对Ⅰ类和非精密进近只能用中等设施的最低标准。进近灯工作长度从入口起只有210米,对Ⅲ类运行无影响,但是不允许作Ⅱ类运行。一旦发生这种故障,应当使用Ⅰ类基本设施的最低标准。
第九十八条 如果进近灯备用电源发生故障,对Ⅲ类和非精密进近无影响,对Ⅱ类和Ⅰ类运行使用Ⅰ类基本设施的跑道视程(RVR)最低标准。
第九十九条 如果整个跑道灯系统不工作,不允许作Ⅱ类和Ⅲ类运行,而且Ⅰ类和非精密进近只允许在白天进行,并使用基本设施的着陆最低标准。
第一百条 如果跑道边灯不工作,所有各类运行只允许在白天进行。
第一百零一条 如果跑道中线灯不工作,对Ⅰ类和非精密进近的着陆最低标准无影响;Ⅱ类运行使用的着陆标准,白天为跑道视程(RVR)350米,夜间为跑道视程(RVR)500米;Ⅲ类运行只允许在白天进行,着陆标准为跑道视程(RVR)300米。
第一百零二条 跑道中线灯的间隔增大至30米,ⅢB类运行着陆最低标准为跑道视程(RVR)150米,对ⅢA类、Ⅱ类、Ⅰ类的运行无影响。
第一百零三条 接地区灯不工作时,ⅢB类运行着陆最低标准在白天为跑道视程(RVR)200米,在夜间为跑道视程(RVR)300米; ⅢA类和Ⅱ类着陆最低标准在白天为跑道视程(RVR)350米,在夜间为跑道视程(RVR)550米。
第一百零四条 跑道灯备用电源不工作时,不允许作Ⅱ类和Ⅲ类运行,只能使用Ⅰ类运行的最低标准,对非精密进近无影响。
第一百零五条 所有因目视或非目视设施发生临时故障而影响到着陆最低标准的数值的改变,空中交通管制员必须及时通知起飞离场和进近着陆的飞机驾驶员。
中国民用航空仪表着陆系统Ⅱ类运行规定
第一章 总则第一条 为了保障民用航空仪表着陆系统Ⅱ类运行安全和有秩序地实施,制定本规定。第二条 本规定适用于民用机场实施的仪表着陆系统Ⅱ类运行(以下简称Ⅱ类运行)。第三条 凡从事民用航空活动的单位均应依据本规定制订Ⅱ类运行实施细则和工作程序。第四条 本规定中下列用语的含义为:
(一)精密进近:使用仪表着陆系统(ILS)、微波着陆系统(MLS)或精密进近雷达(PAR)提供方位和下滑引导的仪表进近。
(二)非精密进近:使用全向信标台(VOR)、导航台(NDB)或航向台(LLZ,或ILS下滑台不工作)等地面导航设施,只提供方位引导,不具备下滑引导的仪表进近。
(三)机场运行最低标准:机场适用于起飞或着陆的限制,对于起飞,用能见度(VIS)或跑道视程(RVR)表示,如果需要应包括云高;对于精密进近着陆,用能见度(VIS)或/和跑道视程(RVR)和决断高(DH)表示;对于非精密进近着陆,用能见度(VIS)、最低下降高(MDH)和云高表示。
(四)超障高(OCH):以跑道入口的标高平面为测算高的基准,按照适当的超障准则确定的最低高。
(五)决断高(DH):在精密进近中,以跑道入口的标高平面为基准规定的高,航空器下降至这个高,如果不能取得继续进近所需的目视参考,必须开始复飞。
(六)能见度(VIS):白天能看到和辨别出明显的不发光物体或晚上能看到明显的发光物体的距离。
(七)跑道视程(RVR):航空器在跑道中线上,驾驶员能看到跑道道面标志或跑道边灯或中线灯的最大距离。
(八)精密进近和着陆运行类别
Ⅰ类(CATI)运行:决断高不低于60米(200英尺),能见度不小于800米或跑道视程不小于550米的精密进近和着陆。
Ⅱ类(CATⅡ)运行:决断高低于60米(200英尺),但不低于30米(100英尺),跑道视程不小于350米的精密进近和着陆。
ⅢA类(CATⅢA)运行:决断高低于30米(100英尺),或无决断高,跑道视程不小于200米的精密进近和着陆。
ⅢB类(CATⅢB)运行:决断高低于30米(100英尺),或无决断高,跑道视程小于200米,但不小于50米的精密进近和着陆。
ⅢC类(CATⅢC)运行:无决断高和无跑道视程的精密进近和着陆。
(九)ILS临界区:在航向信标和下滑信标附近一个规定的区域,在ILS运行过程中车辆、航空器不得进入该区域,以防止其对ILS空间信号造成不能接受的干扰。
(十)ILS敏感区:是临界区延伸的一个区域,在ILS运行过程中车辆、航空器的停放和活动都必须受到管制,以防止可能对ILS空间信号的干扰。
(十一)无障碍区(OFZ):由内进近面、内过渡面、中止着陆面和部分升降带所包围的空间,在这个空间内,除少量规定的项目外,没有任何固定的障碍物穿透。
(十二)机场机动区:机场用于航空器起飞、着陆和滑行的区域,不包括停机坪。
(十三)机场活动区:机场用于航空器起飞、着陆和滑行的区域,包括机动区和停机坪。
(十四)机场控制区:根据安全需要,在机场内划定的人员、车辆进入受到限制的区域。
(十五)排灯:紧密地排在一条横线上的三个或三个以上的航空地面灯。
(十六)灯的失效:当由于某些原因,光束偏离规定的垂直或水平方向或平均光强低于规定的新灯平均光强的50%时,该灯即为失效。
(十七)灯光系统的可靠性:指全部装置在规定的允许误差范围内运行,并且该系统维持在可用状态的概率。
(十八)标志:为了显示航行信息设置在机场活动区道面的一个或一组符号。
(十九)易折性:物体保持其结构的整体性和刚度直至一个要求的最大荷载,而在受到更大荷载冲击时就会破损、扭曲、弯曲,使对飞机的危害减至最小的特性。第二章 营运人第一节 申请与批准第五条 计划实施Ⅱ类运行的营运人必须按规定的程序和方式向民航地区管理局提出申请,经民航地区管理局按本规定的标准审核合格后,报民航总局批准。营运人在取得民航总局的批准后,方可实施Ⅱ类运行。
在实施Ⅱ类运行的过程中,营运人必须持续符合本规定的要求。否则,可视情况取消对其Ⅱ类运行的批准。
空军新学员展开大航线飞行训练!你知道什么是仪表飞行吗?
空军西安飞行学院某旅组织新学员展开仪表大航线飞行训练,通过训练体验飞机极限性能,锤炼学员过硬飞行本领。仪表飞行是运输机高级教练机飞行阶段的必修课目和核心课目,标志着飞行员要具备仅凭仪表对飞机进行操纵,并建立航线进行起降飞行的能力。
针对学员飞行时间短、经验不足的特点,他们扎实组织飞行安全风险评估、座舱模拟训练、特情演练等地面准备。同时利用地面演练的契机,对短板弱项进行了专攻精练,强化学员注意力分配,在密集大量的动作操纵过程中保证飞行状态稳定,提高飞行学员技战术水平。
仪表飞行区别于目视飞行的地方,在于没有那么大的随意性,必须完全要依靠飞机上的设备并且严格控制飞行诸元,因此在地面就要做好仪表设备的检查,比如信号源选择是否无误、导航精度是否准确、设备频率调谐是否正确,摩尔斯码比对等等。飞行中速度、高度应该是多少,什么时候转弯、下降,目视飞行中的“差不多”就“要不得”了。而要做到这些,有三项核心需要掌握:航图识读、飞行程序、根据导航设备飞行。
因作业环境和机载设备等条件的限制原因,仪表飞行对于不少通航飞行员来讲相对陌生或不熟悉。有条件实施仪表飞行的人员由于经验少,对于仪表飞行也有些畏惧的情绪。其实,只要掌握仪表飞行的理念和基本原理,正如掌握了一项技能或知识,仪表飞行并不难。对于有意于提高仪表飞行能力的人员,建议从以下几方面着手。
一是要了解和掌握基础的仪表知识
1. 相信科学设计,树立“规矩”意识。
仪表程序都是按照规范设计出来的,这些程序都是在“规矩”范围内设计和制定的,基本上都是科学合理的,作为驾驶员就应当按照设计的规矩(程序)来操纵飞机,这样才能满足程序设计和安全的要求。但考虑到当前公布的仪表图基本是以运输机的性能为基础设计的,所以低速“小飞机”实施仪表飞行时应当考虑因飞机性能不同而应做出的调整。例如,当机场仪表图上转向五边的程序转弯,有些就区分了A/B类飞机的出航航迹与C/D类飞机的出航航迹,这样的程序考虑了低速飞机的性能,机组按照程序和标准操纵即可。对于没有区分飞机性能类型的程序,对于低速飞机来讲,就应当考虑以小于标准转弯率坡度一半的坡度实施程序转弯或考虑在转弯时飞一段四边或转弯后设置一个五边的切入角切入五边来完成程序转弯。
2. 掌握偏差指示,树立保护区意识。
现在常见的传统仪表程序有:ILS/DME、VOR/DME、NDB/DME、ILS、VOR、NDB等各种进近方式以及等待程序,以不同切入角切入径向线/方位线后进入向/背台飞行等进离场程序。
对于ILS/DME进近来讲,选择相应的ILS导航源后,水平状态指示仪(HSI)上的航道偏离指示器(CDI)单侧的满偏为2.5度,HSI的单侧有两个点的话(有些HSI每侧有5个点),每个点表示1.25度的航道偏离。下滑道的厚度为1.4度,也就是上或下各0.7度,如果在下滑道指示器上单侧有两个点,则表示每个点的偏离指示为0.35度。对于VOR/DME进近来讲,选择VOR导航源后,水平状态指示仪(HSI)上的航道偏离指示器(CDI)单侧的满偏为10度,HSI的每个点表示5度的航道偏离。飞行时,当偏离指示器中心一个点时就要判断本次是否是一次稳定的进近,如果继续产生更多的偏离,就有可能偏出了设计程序的保护范围,飞机可能面临不安全的环境。驾驶员应当考虑复飞后重新建立仪表程序。这样做也就是知其然知其所以然,树立保护区意识,避免盲目自信,粗猛修正,造成危及安全的后果。
对于NDB为导航源的程序,与上述性质内容类似,建议是始终保持飞机在精密进近的偏差范围内,保证安全。
二是掌握和利用机载设备
1. 熟练掌握机载仪表使用
对于可以进行仪表飞行的飞机来讲,一般都配备有两套仪表设备。这就要求驾驶员明白导航源控制盒和水平状态指示仪上指针的选择与对应关系。如果安装了飞行指引仪,则还需要明白航道偏离指示器与导航源的对应关系。避免因没有理清上述对应关系,仪表飞行时使用错误的导航源进行导航。
通过调谐、识别、选择和耦合四步可以确保使用正确导航源和指示实施仪表飞行。调谐就是将NAV和ADF上的频率设置到所需要的频率上。识别就是确保其识别码,也就是摩尔斯代码与频率是对应的,正确的。选择就是将水平状态指示器上的指针选择上所需要的导航源。耦合就是在安装了飞行指引仪的飞机上耦合上相应的模式飞行或驾驶员自己按照仪表指示飞行。
2. 充分利用资源
安装了两套仪表设备的飞机,左座驾驶员和右座驾驶员要各自使用各自对应的导航源。避免两个人同时使用同一导航源,这样做是为了避免选择的导航源失效时,驾驶舱的机组全部进入导航误区。
另外,机组在选择导航源、飞行模式时要相互交叉沟通,这样即可以避免某个人犯错另一个人发现不了,也可以达到相互交流建立共同的情景意识的目的。
三是建立和掌握标准量和基准值的概念
正如我们在上文中了解到,仪表程序都是按规范设计出来的。遵照仪表程序实施飞行,我们也一定要有标准量的概念。例如,仪表飞行时,我们就要利用某一速度下的标准转弯率坡度、1/2标准转弯率坡度、转弯前置角、转弯半径、改平坡度的航向提前量、仪表进近时不同距离对应的高度计算,不同地速对应的下降率、偏流等数值标准实施操纵,以达到精确控制,准确飞行的目的。
基准值主要涉及功率应用和修正航向等。例如,同等速度下如果要建立500英尺/分钟的上升率或下降率,增加或减少的功率值是多少;同等速度和高度下,如果要保持某一坡度转弯飞行,需要增加的功率值是多少;当时飞行条件下,保持某一航迹飞行时,修正偏流后的新基准航向值是多少;不同速度飞行时,预计需要的功率是多少等。经常测算和总结这些基准值会使我们仪表飞行的操纵准确性得到很在的提升。
标准量和基准值的配合就是要让我们产生操纵量的概念,摒弃脑海里只有操纵趋势要求的理解,其目的是实现精确操纵。
四是要资料与设备相结合准备
充分准备就是对于仪表飞行航图上要求的数据和实现的方式有熟练和准确的掌握。充分准备对于提高情景意识,特别是高负荷飞行环境下的情景意识有很好的帮助。我们应当认识到,仪表图上所有表述的内容都是在操作中需要实现的目标。实践过程中,很多驾驶员在研究仪表图时仅仅停留在表面和字面了解。真正飞行时才发现一切都是手忙脚乱,不知所措。出现这种现象的主要原因是在研究仪表图时没有将仪表图上的要求与如何在飞行时实现这些要求结合起来进行预想和设计。对于准确掌握仪表图,就是要求我们做到将仪表图上要求的内容预想到我们对于导航台、指针导航源、航道偏离杆、预选高度等的合理设置。将仪表图的要求与我们飞行设备的使用结合起来进行准备才会更好地帮助我们仪表飞行。切记不能只停留在认识字面的层面识读仪表图进行准备。
五加强和巩固利用知识
仪表飞行越少,知识和技能的应用就越少,越是这样,就越需要在有机会仪表飞行时加强和巩固仪表飞行的小知识、小技巧。因为我们的飞机的性能和操作的标准是相对不变的,知识用多了用熟了,就会总结出一些基本操作量。也会逐渐培养我们好的仪表飞行习惯和提高我们的仪表飞行能力。
除此以外,提前规划在仪表飞行中很重要,每做完一步就要问问自己下一步要做哪些工作?飞机现在哪里下一步去哪里?周边的飞行环境是什么样的等等。慢慢地,仪表飞行时我们的组织能力就会条理、清晰起来。
关于《》的介绍到此就结束了。