【简介:】一、飞机制造技术的特点有哪些?一、优点1、喷气式客机的时速在810千米左右,机动性高。飞机飞行不受高山、河流、沙漠、海洋的阻隔,而且可根据客、货源数量随时增加班次。2、据
一、飞机制造技术的特点有哪些?
一、优点
1、喷气式客机的时速在810千米左右,机动性高。飞机飞行不受高山、河流、沙漠、海洋的阻隔,而且可根据客、货源数量随时增加班次。
2、据国际民航组织统计,民航平均每亿客公里的死亡人数为0.4人,是普通交通方式事故死亡人数的几十分之一到几百分之一,是比火车更为安全的交通运输方式。
二、缺点
1、价格太贵。无论是飞机本身还是飞行所消耗的油料相对其他交通运输方式都高昂的极多。
2、受天气情况影响。虽然航空技术已经能适应绝大多数气象条件,但是风、雨、雪、雾等气象条件仍然会影响飞机的起降安全。
3、起降场地也有限制,只适用于重量轻,时间紧急,航程又不能太近的运输。
二、医药制造技术有哪些?
药品生产技术专业:培养从事疫苗、血液制品、蛋白与核酸药物、分子诊断试剂、天然药物等生物药物以及功能食品与添加剂、动物药、农药、生物医学材料等相关产品的生产、检验、营销和开发辅助工作的专业人才。
就业方向为生物药物及相关产品生产、营销企业和研发单位的相应技术岗位和服务岗位。
三、制造飞机类股票有哪些?
沈阳飞机公司 战斗机等
成都飞机公司 战斗机等
西安飞机公司 运输机 特种机 轰炸机
哈尔滨飞机公司 直升机小型运输机
南昌飞机公司 强击机
贵州航空工业公司 战斗机 教练机
昌河飞机公司 直升机 教练机
上海飞机公司 麦道客机 ARJ
还有建设中的 天津 空客组装厂
另有大小合资公司若干 均是同上述公司合作合资的
上述公司均隶属于中国有两大集团:中国航空工业第一集团公司和中国航空工业第二集团公司
四、中国制造的飞机有哪些?
1,研发战斗机的是,沈飞和成飞,2, 研发教练机和无人机的是洪飞(洪飞就是南飞,现已命名为洪都航空工业集团有限公司)和贵航 ,3,研发大型运输机和轰炸机的是西飞(原陕飞并进西飞)
4,研发直升机的是哈飞和景德镇。以上属于军事飞机。民航的就是上海国产的c919大型客运飞机,已超过美国波音几个系列,销量很大,现在研发的c929大飞机是和俄罗斯共同研发的,命名为CR929,将在2020年跨洋首飞。
五、制造飞机发动机有什么难点?
因为航空发动机上面体现出来的,都是人类工业文明的巅峰技术,目前世界顶级的航空发动机,被誉为“人类工业文明皇冠上的明珠”不是没有道理的,在这里就和大家简单从航空发动机的材料方面来说一下航发的制造难度,首先先问大家一个问题,你们知不知道航空发动机内部工作环境最恶劣的是哪里么?是涡轮,为什么这么说?主要有两点,一是涡轮需要承受很高的温度,二是同时还需要承受极大的离心力,这个离心力有多大?十几吨以上,因为航发在工作时,涡轮的转速高达10000~20000转/分钟,所以在这种高速转动下,每一片涡轮叶片需要承受非常大的离心力。下图中的就是航发里面的涡轮叶片:▲没有巴掌大的涡轮叶片
当航空发动机运转时,像图中这个还没有一个巴掌大的涡轮叶片,就需要承受十几吨以上的巨大离心力,以及上千摄氏度的高温,而这种恶劣的工作环境所带来的就是,每一片这种小小的涡轮叶片,都可以产生数百马力的功率,或许大家对这个数据没什么概念,我举个例子吧,大家平时开的普通小轿车,其发动机功率大概在100~150马力左右,而即使是那些使用2.5T或者3.0T发动机的轿跑、SUV等汽车,它们的发动机功率也不过300~400马力。所以,对于航空发动机来说,里面还没有一个巴掌大的涡轮叶片的输出功率就已经比大部分的汽车发动机要大了,至于整个航空发动机的功率,比如那些大型客机上面的航发,它们的功率则是可以很轻松就达到数万马力,还是举个例子,现阶段推力最大的航发GE90系列航空发动机,功率就超过了10万马力。
▲GE90-115B发动机
而跟涡轮推力有密切相关的就是发动机的“热效率”,所谓的热效率,就是指在涡轮的尺寸大小保持不变的情况下,喷射在涡轮上的高压燃气温度的越高,其产生的推力就越大,大概有这么一个规律,高压燃气的温度每提高约55℃,涡轮的推力就可以提高10%。所以,想要提高航空发动机的推力,那么就需要尽可能的提高高压燃气的温度,这样一来,就导致现在的航空发动机里面的涡轮叶片需要承受的燃气温度高达1600℃(举个例子,“阵风”上面的M88发动机的涡轮温度约为1590℃),而在这种高温、高压、高振动的极端环境面前,用来制造涡轮叶片的材料要求是非常之高的,通常是使用铼、钴和铬的镍基高温合金,同时还需要通过单晶(SC)和定向凝固(DS)生产工艺来尽可能提高涡轮叶片在极端环境下的抗蠕变性能。
▲各种晶体结构对比图
接着再来简单说一下什么是单晶体结构材料,这种材料又有着怎样的性能优势?首先,在自然条件下,合金的结构是“小颗粒型”的,这种颗粒状的东西就叫做“晶粒”,而在晶粒和晶粒之间又普遍存在着“界限”,这种界限就叫做“晶界”,如上图中的普通等轴晶体和圆柱形晶体所示,注意看圆圈中放大的部分,就是“颗粒状晶粒”和“柱状晶粒”之间的晶界。而这个晶界在高温条件下又是非常脆弱的,所以高温环境中金属的抗疲劳性、抗蠕变性会变差,因此,想要提高金属材料的整体性能,就需要消除这些脆弱的晶界,而前面说到晶界就是晶粒和晶粒之间的界限,所以只要使材料成为一个完整的“大块晶粒”,即不存在颗粒状晶粒的情况下,晶界也就不复存在了,这个完整的“大块晶粒”也就是上图中的单晶体结构了,它是一个整体,内部不存在晶界,所以,单晶体材料在高温环境下有更好的抗疲劳性和抗蠕变性。▲带热障涂层(TBC)的涡轮叶片
除了通过单晶生产工艺(SC)来提高金属材料在高温环境下的抗蠕变性和抗疲劳性之外,还有一种提高涡轮叶片抗高温性能的技术就是给它覆盖一层热障涂层(TBC),这个TBC工艺的目的就是加强金属材料在高温环境中的抗腐蚀性和抗氧化性,因为工作环境温度越高,材料的抗腐蚀性和抗氧化性要求也就越严格。所以,从上世纪70年代开始,在航空发动机的涡轮叶片就开始使用这种热障涂层(TBC)工艺了,最开始的隔热涂层材料是铝化物,到了后面80年代,效果更好更先进的陶瓷隔温涂层开始面世。而这些热障涂层可以屏蔽100~200摄氏度左右的燃气温度,所以加了这些热障涂层的涡轮叶片,它们的承受高温能力就上了一个台阶,在一些极端条件下,这种隔热手段理论上可以把涡轮叶片的使用寿命提高一倍。▲冲击冷却原理见图
最后一点,其实想要提高涡轮叶片材料的耐高温性能,仅仅有热障涂层(TBC)以及单晶工艺(SC)也是不够的,为什么?因为涡轮材料本身可以承受的极限温度也就是1100℃左右,即使有了热障涂层可以隔绝100~200℃左右的燃气温度,也不过是把涡轮叶片的极限承受温度提高到1300℃这个级别,而前面已经说了,现代的航空发动机涡轮温度可以高达1600℃。所以,想要保证涡轮叶片能够在1600℃甚至以上的极限高温环境中正常工作,就必须还要有其他的辅助手段来提高其耐高温性能,这些手段包括冲击冷却、气流冷却、气膜冷却等,不过大同小异的是,这些冷却手段的共同点就是都得在涡轮叶片的内部勾勒出复杂的气动通道,通过空气对流来带走一部分热量。这里简单说一种冷却方法,像冲击冷却,该冷却手段通常用于涡轮热负荷较高的区域,比如叶片的前端,通过高速气流撞击叶片内表面,产生冷热空气对流,带走一部分热量,以此提高涡轮叶片的高温承受能力,而且这种冷却方式相对于与常规气流冷却手段来讲,可以允许通过更多的热量传递。
▲测试中的军用F135-PW-100发动机
因此,正是因为航空发动机的研发和制造难度非常大,所以现在全世界范围内有资格在这个领域立足的国家也没多少个,尤其是在对减重和综合性能要求更高的军用航空发动机领域,更是屈指可数,因为军用航发是一种小涵道比发动机,而民用客机上的则是大涵道比涡扇发动机,其推力主要来自涡轮带动涡扇,所以,燃气热效率对涡轮叶片推力的影响没有那么明显,这么说吧,全世界能造大推力军用航发的国家就4个,分别是美英俄中,为什么没有法国?因为法国最新的M88发动机是中推,至于德日等国,不好意思,入不了门,日本汽车发动机是很厉害的,但是军用发动机就算了,别说航空发动机了,坦克发动机日本都造不好,反正爬个坡都会爆缸。
六、生物制造技术产品有哪些?
生物科学技术一般是指利用微生物的特定性状,通过现代化工程技术,在生物的反应器中生产有用物质的一种技术系统。
目前医用抗生素、农用抗生素等已有近200个品种,绝大部分都是发酵的产品。除抗生素外,发酵工程产品还包括氨基酸、工业用酶等。我们日常生活中常见的味精、维生素B2等也是发酵工程的产品。
七、先进制造技术有哪些?
先进制造技术(advanced manufacturing technique,缩写AMT,具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。包括:——微电子技术、信息技术与计算机技术; ——自动化与自动控制技术; ——人工智能技术; ——现代设计理论与技术; ——材料加工、成形的新技术; ——现代管理科学与技术。而先进制造技术主要包括以下三个技术群:(1)主体技术群:是制造技术的核心,它包括两个基本部分:有关产品设计技术和工艺技术。(2)支撑技术群:a.信息技术:接口和通信、数据库技术、集成框架、软件工程人工智能、专家系统和神经网络、决策支持系统。b.标准和框架:数据标准、产品定义标准、工艺标准、检验标准、接口框架。c.机床和工具技术。d.传感器和控制技术:单机加工单元和过程的控制、执行机构、传感器和传感器组合、生产作业计划。e.其它;(3)制造技术基础设施.要素包括了车间工人、工程技术人员和管理人员在各种先进生产技术和方案方面的培训和教育等。
八、飞机数字化制造技术?
数字化技术是以数字电子计算机硬软件、周边设备、协议和网络为基础的信息离散化表述、定量、感知、传递、 存储、处理、控制、联网的集成技术。其用于制造业可包括数字化制造技术与数字化产品两部分。数字化制造技术是将数字化技术用于支持部件全生命周期的制造活动和企业的全局优化运作,数字化产品是将数字化技术注入到工业产 品中。
数字化技术还原了实际维修各个环节的本质过程,在复合材料部件开展维修工作之前 , 就能全面分析复合材料部件维修过程的合理性 , 做出前瞻性的决策与优化实施方案。此外 , 通过数字化技术可以进行维修操作过程仿真 , 有效降低维修费用 , 提高维修的准确性与效率。
九、俄罗斯飞机发动机制造商有哪些?
俄罗斯 “土星”科研生产联合体
俄罗斯 “土星”科研生产联合体(NPO SATURN,简称土星公司)是俄罗斯飞机发动机制造的领先者。公司专门从事飞机发动机、动力装置和气泵单元体的设计和制造。
“土星”公司负责俄罗斯第五代军用发动机的研发和生产,与法国SNECMA公司合作研发和生产用于苏霍伊“超级喷气”100飞机的发动机SaM146.
负责第五代轻型战斗机AL-55系列发动机的研发,并且担负苏-27战机和其改型战机4++代发动机AL-31F的现代化。“土星”公司研发和生产了额定功率在2.5~325MW动力发生装置的第四代和第五代燃气轮机。
俄罗斯彼尔姆航空发动机集团公司(Perm Engine Compony)
俄罗斯彼尔姆航空发动机集团公司(Perm Engine Compony简称彼尔姆公司)主要生产飞机发动机、工业燃气轮机、发电燃气轮机、液体螺桨推进发动机、直升机减速箱和传动器。员工总人数达22500人。
俄罗斯彼尔姆航空发动机集团公司的科学性和生产潜力使得公司位于俄罗斯航空发动机行业的前列。
俄罗斯彼尔姆航空发动机集团公司的历史可追溯到1934年6月1日,当时第一台标志着用于30-50年代战斗机和民用飞机的空冷活塞系列发动机开端的M-25航空发动机组装完成。从那时起俄罗斯彼尔姆航空发动机公司始终位于世界发动机制造业的前列。
俄罗斯彼尔姆航空发动机公司为俄罗斯和世界发动机制造业作出了突出贡献:
1934-1954年研发了用于苏联战斗机、运输机和直升机的气冷活塞发动机系列产品。
1954-1958年研发 “米”系列直升机的变速箱。
1959年制造了世界第一台自由涡轮的涡轴发动机D-25V。同年研发用于“宇宙”运载火箭的RD-214发动机系列。
1964年研发世界最可靠运载火箭“核子”的D-253发动机系列产品。
1965年同时代最完美和燃油效率最高的涡扇发动机D-30.
1972-1975年巴黎航展公认最好的发动机同时代最完美和燃油效率最高的涡扇发动机D-30KU.
1979年世界第一台带后加力、可变喷管和数字控制及监控系统的涡扇发动机D-30F6(用于米格-31战斗机)。
1982年用于世界最大载重能力米-26直升机的VR-26变速箱系列产品。
1978年用于“质子”运载火箭的RD-275发动机系列产品。
1992年俄罗斯第一台第四代高效低噪涡扇发动机PS-90A。
1994年唯一的高海拔涡扇发动机(用于M-55“地球物理”高空战略侦察)。
1994-2004年研发了7种在市场上保持领先地位的燃气涡轮发动机。
在俄罗斯和独联体其他国家大约60%的旅客和货物是由装有彼尔姆动力装置的飞机和直升机运载的,迄今世界上有12500台装有彼尔姆变速箱的直升机在成功运行。
十、仿生制造技术包括哪些技术?
仿生制造技术有:
1、自生长成形工艺,即在制造过程中模仿生物外形结构的生长过程,使零件结构最外层各处形状随其应力值与理想状态的差距作自适应伸缩直至满意状态为止。又如,将组织工程材料与快速成形制造相结合,制造生长单元的框架,在生长单元内部注入生长因子,使各生长单元并行生长,以解决与人体的相容性和与个体的适配性及快速生成的需求,实现人体器官的人工制造。
2、仿生设计和仿生制造系统,即对先进制造系统采用生物比喻的方法进行研究,以解决先进制造系统中的一些关键技术问题。
3、智能仿生机械。
4、生物成形制造,如采用生物的方法制造微小复杂零件,开辟制造新工艺。
仿生制造为人类制造开辟了一个新的广阔领域。人们在“仿生制造”中不仅是师法大自然,而且是开始学习与借鉴他们自身内秉的组织方式与运行模式。如果说制造过程的机械化、自动化延伸了人类的体力,智能化延伸了人类的智力,那么,“仿生制造”则是延伸人类自身的组织结构和进化过程