当前位置:  > 飞机专利

飞机的构成图

作者: 发布时间: 2022-10-16 06:01:02

简介:】本篇文章给大家谈谈《飞机的构成图》对应的知识点,希望对各位有所帮助。本文目录一览:
1、飞机的基本构造?


2、飞机的组成结构有哪几部分


3、飞机是什么是有什么组成的


4

本篇文章给大家谈谈《飞机的构成图》对应的知识点,希望对各位有所帮助。

本文目录一览:

飞机的基本构造?

飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置 (主要介绍机翼和机身)。

机翼

薄蒙皮梁式

主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。

多梁单块式

从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。

多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式)

这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。当左、右机翼连成整体时,与机身的连接与多梁单块式类似。但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。

蒙皮

蒙皮的直接功用是形成流线形的机翼外表面。为了使机翼的阻力尽量小,蒙皮应力求光滑,减小它在飞行中的凹、凸变形。从受力看,气动载荷直接作用在蒙皮上,因此蒙皮受有垂直于其表面的局部气动载荷。此外蒙皮还参与机翼的总体受力-它和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁结构承受机翼的扭矩;当蒙皮较厚时,它与长桁一起组成壁板,承受机翼弯矩引起的轴力。壁板有组合式或整体式。某些结构型式(如多腹板式机翼)的蒙皮很厚,可从几mm到十几mm,常做成整体壁板形式,此时蒙皮将成为最主要的,甚至是惟一的承受弯矩的受力元件。

长桁

长桁(也称桁条)是与蒙皮和翼肋相连的构件。长桁上作用有气动载荷。在现代机翼中它一般都参与机翼的总体受力—承受机翼弯矩引起的部分轴向力,是纵向骨架中的重要受力构件之一。除上述承力作用外,长桁和翼肋一起对蒙皮起一定的支持作用。

翼肋

普通翼肋构造上的功用是维持机翼剖面所需的形状。一般它与蒙皮、长桁相连,机翼受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂直方向的支持。同时翼肋又沿周边支持在蒙皮和梁(或墙)的腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的支承剪流。

加强翼肋虽也有上述作用,但其主要是用于承受并传递自身平面内的较大的集中载荷或由于结构不连续(如大开口处)引起的附加载荷。

翼梁

翼梁由梁的腹板和缘条(或称凸缘)组成(图3.11)。翼梁是单纯的受力件,主要承受剪力Q和弯矩M。在有的结构型式中,它是机翼主要的纵向受力件,承受机翼的全部或大部分弯矩。翼梁大多在根部与机身固接。

纵墙

纵墙(包括腹板)的缘条比梁缘条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。墙和腹板一般都不能承受弯矩,但与蒙皮组e799bee5baa6e79fa5e98193e78988e69d8331333365633839成封闭盒段以承受机翼的扭矩,后墙则还有封闭机翼内部容积的作用。

机身

机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

桁梁式

桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。蒙皮较薄。这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。剪力则全部由蒙皮承受。

桁条式

这种型式机身的特点是长桁较密、较强;蒙皮较厚。此时弯曲引起的轴向力将由许多桁条与较厚的蒙皮组成的壁板来承受;剪力仍全部由蒙皮承受。

硬壳式

硬壳式机身结构是由蒙皮与少数隔框组成。其特点是没有纵向构件,蒙皮厚。由厚蒙皮承受机身总体弯、剪、扭引起的全部轴力和剪力。隔框用于维持机身截面形状,支持蒙皮和承受、扩散框平面内的集中力。这种型式的机身实际上用得很少,其根本原因是因为机身的相对载荷较小.而且机身不可避免要大开口,会使蒙皮材料的利用率不高,开口补强增重较大。所以只在机身结构中某些气动载荷较大、要求蒙皮局部刚度较大的部位,如头部、机头罩、尾锥等处有采用。具体构造也有用夹层结构或整体旋压件等形式。

(a)桁条式;(b)桁梁式;(c)硬壳式

1--长桁;2--桁梁;3--蒙皮;4--隔框

隔框

隔框分为普通框与加强框两大类。

普通框用来维持机身的截面形状。一般沿机身周边空气压力为对称分布,此时空气动力在框上自身平衡,不再传到机身别的结构去。

加强框,其主要功用是将装载的质量力和其他部件上的载荷经接头传到机身结构上的集中力加以扩散,然后以剪流的形式传给蒙皮。

长桁与桁梁

长桁作为机身结构的纵向构件,在桁条式机身中主要用以承受机身弯曲时产生的轴力。另外长桁对蒙皮有支持作用,它提高了蒙皮的受压、受剪失稳临界应力;其次它承受部分作用在蒙皮上的气动力并传给隔框,与机翼的长桁相似。桁梁的作用与长桁相似,只是截面积比长桁大。

蒙皮

机身蒙皮在构造上的功用是构成机身的气动外形,并保持表面光滑,所以它承受局部空气动力。蒙皮在机身总体受载中起很重要的作用。它承受两个平面内的剪力和扭矩;同时和长桁等一起组成壁板承受两个平面内弯矩引起的轴力,只是随构造型式的不同,机身承弯时它的作用大小不同

飞机的组成结构有哪几部分

大多数飞机都是由下面五个主要部分组成,即:机翼、机身、尾翼、起落装置和动力装置。它们各有其独特的功用。

(一) 机翼

机翼的主要功用是产生升力,以支持飞机在空中飞行;也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。历史上曾出现过双翼机,甚至还出现过多翼机。但现代飞机一般都是单翼机。

(二) 机身

机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

(三) 尾翼

尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平定面和可动的升降舵组成。垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,并保证飞机能平稳地飞行。

(四) 起落装置

起落装置是用来支持飞机并使它能在地面和水平面起落和停放。陆上飞机的起落装置,大都由减震支柱和机轮等组成。它是用于起飞、着陆滑跑,地面滑行和停放时支撑飞机。

(五) 动力装置

动力装置主要用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电源,为空调设备等用气设备提供气源。

飞机除了上述五个主要部分之外,根据飞行操纵和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备和其它设备等。

飞机是什么是有什么组成的

飞机的构成主要由机身、动力装置、机翼、尾翼、起落装置、操纵系统和机载设备组成。 机身是飞机的主体,用于连接其他部件并容纳乘员、货物、设备等。虽然大多数飞机都有一个机身,但它并不是飞机必不可少的部件。早期的飞机常常用金属骨架将各部件连接在一起,现代超轻型飞机和一些滑翔机也是如此。还有一种特殊的飞翼式飞机也没有机身,整个飞机看起来就是一副大机翼,人员、货物、燃油等全部装在机翼内。美国B-2隐身轰炸机就是飞翼式布局。 动力装置是飞机起飞和飞行必需的推进系统。它往往包括动力装置本身和动力转换装置。对于螺旋桨式飞机,动力装置是活塞式或涡轮螺旋桨发动机,动力转换装置是螺旋桨。前者产生驱动力矩,后者通过旋转产生气动推力或拉力。对于喷气式飞机,动力装置是产生高温高压气体的喷气发动机,动力转换装置是喷管,高速喷射气流产生的反作用力推动飞机前进。 机翼是飞机产生升力的部分,也是飞机较重要的空气动力部件。表面上看起来机翼只是一块有一定面积、形状和厚度的木板或铝合金板,实际上却是一个非常复杂的部件,设计难度很大,设计得成功与否直接决定飞机的总体性能。机翼有平直翼、后掠翼、前掠翼和变后掠翼之别,还有单翼和双翼之分,其结构、大小、安装的位置也不同。机翼上一般还装有附件,如用于操纵左右转变或滚转的副翼和用于改变升力、减速、增加升力或改变升力布局的襟翼。机翼内部还往往用来贮存燃油、放置起落架,机翼外部还可外挂副油箱及进攻型武器。 尾翼是飞机保持稳定和实现操纵的部件,通常在飞机的尾部。尾翼分水平尾翼和垂直尾翼两部分,由于它们是起稳定作用的,所以又称安定面。有的飞机尾翼呈V字型,称V型尾翼,没有水平与垂直尾翼之分,但同时具有二者的功能。有的飞机特别是三角翼飞机,只有垂直尾翼而没有水平尾翼。水平尾翼主要用于飞机的纵向稳定(俯仰稳定)。在有的飞机上,水平尾翼不是安装在飞机尾部,而是位于前部。这种尾翼称为前翼或鸭翼。垂直尾翼安装在水平翼的中部,用于飞机的方向稳定,它的剖面形状是对称的。高速飞机为产生足够大的航向稳定性,需要大面积垂直尾翼,但考虑到强度等因素,往往采用两个同样的垂直尾翼,有的大型飞机甚至还有三个或三个以上垂直尾翼。 起落装置是飞机起飞、降落和停放过程中支撑飞机的装置,一般有承力支柱、减震器、机轮和收放机构组成。陆上起降的飞机大都是机轮,分前三点和后三点两种。由于后三点式飞机着陆滑跑稳定性差,机头较高,飞行员不易观察,所以现代先进的飞机多采用前三点式。在冰雪上起降的飞机用滑橇代替机轮,在水上起降的水上飞机则用浮筒代替机轮。20年代以前,飞机的起落架都是固定的,飞行时阻力较大。现代军用飞机、大型运输机的起落架都是可以收放的,飞行过程中起落架收入机身或机翼内,可大大降低阻力。由于收放机构会增加重量和复杂性,轻小型飞机的起落架则多采用不可收放式。 操纵系统主要由驾驶杆、舵(脚蹬)、助力装置、传动装置和各舵面组成。在飞行中,飞行员操纵杆、舵,通过助力和传动装置使副翼和方向舵变化一定的角度,以改变飞行状态。飞行员向后拉杆时,升降舵向上偏转,飞机上仰;前推驾驶杆时,升降舵向下偏转,飞机向下俯冲;向左压驾驶杆时,飞机向左倾斜;向右压驾驶杆时,飞机向右倾斜。左操纵脚蹬向前、右操纵脚蹬向后时,方向舵左转,飞机向左转弯;反之,飞机向右转弯。 机载设备是飞机完成特种任务或保障正常飞行的各种设备。机载设备一般包括飞行仪表、通信、导航、环境控制、生命保障、能源供给等设备,这些设备可以根据要求进行选装。飞机还装有与特定任务有关的特种机载设备,如战斗机的雷达、电子战、导弹、火炮及火力控制系统;侦察机的各种侦察设备;旅客机的各种服务装置等。

飞机的结构

大多数飞机由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置。

机翼的主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。在航空技术不发达的早期为了提供更大的升力,飞机以双翼机甚至多翼机为主,但现代飞机一般是单翼机。 在机翼设计的过程当中,经常提到的一个矛盾是飞机的稳定性和操作性两个方面,上单翼飞机好像提起来的塑料袋,他非常的稳定,但是操作性稍微差一点。下单翼飞机好像托起来的花瓶,操作性很灵活,但是稳定性就稍微逊色一点。

但考虑到机翼对发动机噪音的屏蔽作用、便于维护等,大型民用客机飞机一般采用下单翼设计,同时采用上反角安装,以提高机动性。

机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。但是飞翼是将机身隐藏在机翼内的。

尾翼包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降舵组成(某些型号的民用机和军用机整个平尾都是可动的控制面,没有专门的升降舵)。垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼(瑞典的AJ-37与JAS39等等飞机是首翼)的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。

起落装置又称起落架,是用来支撑飞机并使它能在地面和其他水平面起落和停放。陆上飞机的起落装置,一般由减震支柱和机轮组成,此外还有专供水上飞机起降的带有浮筒装置的起落架和雪地起飞用的滑橇式起落架。它是用于起飞与着陆滑跑、地面滑行和停放时支撑飞机。

一般的飞机起落架有3个支撑点,根据这三个支撑点的排列方式,往往分为前三角起落架和后三角起落架。其中,前三角起落架指前面一个支撑点,后面两个支撑点的起落架形式,使用此类起落架的飞机往往静止时仰角较小,在起飞时很快就可以达到很高的速度,瞬间机翼的两面风速差达到临界,飞机得到足够的升力后即可起飞;后三角起落架采用的是前面两个支撑点,后面一个支撑点的形式,使用此类起落架的飞机往往静止时仰角较大,当飞机在跑道上达到一定的速度的时候,机翼两面的风速差即可达到一个临界,此时后起落架会被抬起,驾驶员继续推油门杆,同时向后拉操作杆以控制飞机平衡,当速度达到一定的值时,飞机即可起飞。

动力装置主要用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电力,为空调设备等用气设备提供气源。

现代飞机的动力装置主要包括涡轮发动机和活塞发动机两种,应用较广泛的动力装置有四种:航空活塞式发动机加螺旋桨推进器;涡轮喷射发动机;涡轮螺旋桨发动机;涡轮风扇发动机。随着航空技术的发展,火箭发动机、冲压发动机、原子能航空发动机等,也有可能会逐渐被采用。动力装置除发动机外,还包括一系列保证发动机正常工作的系统,如燃油供应系统等。

讲到飞机的动力装置,就不得不讲一下飞机的推重比。推重比就是飞机的推力与飞机所受到的重力的比值。一般的民用飞机的推力是小于飞机的重力的,因为每增加一个KN的推力,都要增加飞机的制造成本。而当飞机的推力大于飞机的重力的时候,飞机可以实现高速爬升甚至垂直爬升,很多需要高机动性能的飞机,比如战斗机等都有很大的推力和很小的重力。

另外,等同重力的要求下,飞机的推力越大,机翼面积就越小,飞机巡航阻力就越小,速度就越快,滑跑距离就越长。反之亦然。

飞机除了上述五个主要部分之外,还装有各种仪表、通讯设备、领航设备、安全设备和其它设备等。

其他的如鸭翼式结构,由后置的主机翼与可以理解成前置水平尾翼的鸭翼构成。也就是用鸭翼来控制飞机的仰角,水平尾翼的位置是鸭翼结构的主翼,来控制飞机的横滚。

无尾结构,受益于矢量推力发动机的无尾结构飞机,只有一个多是三角形的主翼,没有控制仰角的水平尾翼和鸭翼。靠发动机推力矢量方向变化来控制飞机的仰角。

三翼面结构,同时有主翼、水平尾翼、鸭翼的飞机。操作性能更高。

双垂直尾翼结构,战斗机多用的结构,踩舵时可以让飞机不用更滚就转向。

现代飞机驾驶舱内可供驾驶员使用的飞行操纵装置通常包括:

主操纵装置:驾驶杆或驾驶盘、方向舵脚蹬、油门杆和气门杆。在某些采用电传操纵系统的飞机上,驾驶杆或驾驶盘已经被简化成位于驾驶员侧方的操纵杆。

辅助操纵装置:襟翼手柄、配平按钮、减速板手柄。

随着电子技术的发展,飞行操纵装置的形式也发生了根本性的变化。在大型飞机中,传统的机械式操纵系统已逐渐地被更为先进的电传操纵系统所取代,计算机系统全面介入飞行操纵系统,驾驶员的操作已不再像是直接操纵飞机动作。由于某些采用电传操纵系统的飞机取消了原有的驾驶杆或驾驶盘等装置而改为侧杆操纵,驾驶舱的空间显得比以往更加宽松,所以有些驾驶员称此类驾驶舱为“飞行办公室”。原子能的发现和利用又为飞机动力开辟了一个新的途径。1946年约翰·霍普金斯大学应用物理实验室分析了核动力飞机的可行性和潜在的问题。在当时最大的问题是缺乏防辐射材料的数据,其他的问题还包括飞机在运行或事故中会泄露的放射性物质,要如何对机组和地面人员进行保护,还存在试飞场地和范围的选择问题。飞机在飞行中会向大气释放放射性物质飞机自身会产生直接辐射。为此制定了核动力飞机的操作要求:及时在最不利的情况下,核动力飞机不能向大气中排放放射性物质,飞机的一切有害辐射必须被限制在飞机内部或预先指定的禁区内。

1946年对核动力飞机的研究最终演变成长期的飞机核能推进(NEPA)计划。NEPA计划始于该年5月,由美国空军主持,所以研究方向是核动力远程战略轰炸机和高性能飞机。由于核能具有持久性和高温双重特性,所以在理论上使用一个反应堆是可行的。但是洛克希德飞机公司在1957年的报告中提出“由于战略轰炸机需要的高速性和高续航能力,以及相对于类似化学能飞机的潜在低空性能优势,将成为核动力的第一候选。

飞机构成机体的是哪些部分

飞机的主要组成部分有机体、起落装置、动力装置、飞行控制系统、机载设备,以及其它系统。作战飞机还有机载武器系统。

机体包括机翼、机身和尾翼。

机翼的功用是在大气中运动时产生升力,还装有副翼和扰流片;没有尾翼的飞机,机翼上装有纵向操纵装置(升降副翼),此外,机翼上还装有增升装置。

机身用于安置人员,装载设备、货物、武器、动力装置和燃料等。机翼、尾翼都固定在机身上,有的飞机的起落架支柱也固定在机身上。

尾翼分为水平尾翼和垂直尾翼。水平尾翼一般由水平安定面和升降舵组成,垂直尾翼由垂直安定面和方向舵组成。有的飞机将水平尾翼做成一个整体,可以操纵偏转,称为全动平尾。有些飞机没有水平尾翼,在机翼前面装有水平小翼面,称为前翼或鸭翼。水平尾翼保证飞机的俯仰稳定性、操纵性和平衡。垂直尾翼保证飞机的方向稳定性和操纵性,并与机翼、副翼或扰流片或差动平尾共同保障飞机的横向稳定性和操纵性。

飞机有哪几个主要组成部分

大多数飞机由五个主要部分组成:

是机翼、机身、尾翼、起落装置和动力装置。

关于《飞机的构成图》的介绍到此就结束了。

尚华空乘 - 航空资讯_民航新闻_最新航空动态资讯
备案号:滇ICP备2021006107号-341 版权所有:蓁成科技(云南)有限公司    网站地图
本网站文章仅供交流学习,不作为商用,版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除。