【简介:】本篇文章给大家谈谈《直升飞机内部结构图》对应的知识点,希望对各位有所帮助。本文目录一览:
1、直升飞机的构造
2、直升机的构造
3、直升机的结构原理图,构造 ,
4、直升
本篇文章给大家谈谈《直升飞机内部结构图》对应的知识点,希望对各位有所帮助。
本文目录一览:
- 1、直升飞机的构造
- 2、直升机的构造
- 3、直升机的结构原理图,构造 ,
- 4、直升机的结构有什么特点?
- 5、直升机由几部分组成?
- 6、武装直升机的结构是什么样的?
直升飞机的构造
直升机的前飞
直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。 直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点 在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首 先说明这种飞行状态下直升机的力和旋翼的需用功率。
平飞时力的平衡
相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力 G,机体的废阻力 X身及尾桨推力T尾。前飞时速度轴系选取的原则是: X铀指向飞行速度V方向; Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43) 。
平飞时力的平衡
X轴:T2=X身
Y轴: T1=G
Z轴:T3约等于T尾
其中 Tl, T2, T3分别为旋翼拉力在 X, Y,Z三个方向的分量。 对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩 平衡,直升机稍带坡度角 r,故尾桨推力与水平面之间的夹角为 y,T尾与T3方向不完全 一致,因为 y角很小,即cosr约等于1,故Z向力采用近似等号。
平飞需用功率及其随速度的变化
平飞时,飞行速度垂直分量 Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由 三部分组成:型阻功率——P型;诱导 功率——P诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消 耗的功率。
从上图可以看出,旋翼拉力的 第二分力 T2可平衡机身阻力 X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身 在机身相对水平面姿态变化不大的情况 下,其值近似与V的平方成正比,这样废阻功
平飞需用功率随速度的变化
率P废就可以近似认为与平飞速 度的三次方成正比,如上图中的点划线③所示。
平飞时,诱导功率为P诱=TV,其中T为旋翼拉力, vl为诱导速度。当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度 V的增大而减小,因此平飞诱导功率 P诱随平飞速度V的变化如上图中细实线②所示。
平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。
图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。 它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎 飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于 诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下 降趋势,但这种下降趋势随 V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度 增加急剧增加。平飞需用功率随 V的增加在达到平飞需用功率的最低点后增加;总的平飞 需用功率随 V的变化则呈上升趋势,而且变得愈来愈明显。
直升机的后飞
相对气流不对称,引起挥舞及桨叶迎角的变化
直升机的侧飞
侧飞是直升机特有的又一种飞行状态,它与悬停、小速度垂直飞行及后飞 一起是实施某些特殊作业不可缺少的飞行性能。一般侧飞是在悬停基础上实施 的飞行状态。其特点是要多注意侧向力 的变化和平衡。由于直升机机体的侧向 投影面积很大,机体在侧飞时其空气动 力阻力特别大,因此直升机侧飞速度通 常很小。由于单旋翼带尾桨直升机的侧 向受力是不对称的,因此左侧飞和右侧 飞受力各不相同。向后行桨叶一侧侧飞,旋翼拉力向后行桨叶一例的水平分量大于向前行桨叶一侧的尾桨推力,直 升机向后方向运动,会产生与水平分量反向的空气动力阻力Z。当侧力平衡时,水平分量等于尾桨推力与空气动力 阻力之和,能保持等速向后行桨叶一侧侧飞。向前行桨叶一例侧飞时,旋翼拉 力的水平分量小于尾桨推力,在剩余尾桨推力作用下,直升机向民桨推力方向一例运动,空气动力阻力与尾桨推力反向,当侧力平衡时,保持等速向前行桨叶一侧飞行。
直升机的构造
直升机主要由机体和升力(含旋翼和尾桨)、动力、传动三大系统以及机载飞行设备等组成。旋翼一般由涡轮轴发动机或活塞式发动机通过由传动轴及减速器等组成的机械传动系统来驱动,也可由桨尖喷气产生的反作用力来驱动。
直升机的最大时速可达300km/h以上,俯冲极限速度近400km/h,实用升限可达6000米(世界纪录为12450m),一般航程可达600~800km左右。携带机内、外副油箱转场航程可达2000km以上。根据不同的需要直升机有不同的起飞重量。当前世界上投入使用的重型直升机最大的是俄罗斯的米-26(最大起飞重量达56t,有效载荷20t)。当前实际应用的是机械驱动式的单旋翼直升机及双旋翼直升机,其中又以单旋翼直升机数量最多。
直升机的结构原理图,构造 ,
直升机的结构原理图和构造如下所示:
直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。
没有一定的反扭力措施,直升机就要打转转 / 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。
直升机的结构有什么特点?
现代的直升机飞得很快,速度已达每小时350多千米。不仅如此,它还飞得又高又远。现在它的最大飞行高度为1万多米,而最大航程是3000多千米。另外,它还是一个大力士,运载量最大可达40多吨。
直升机具有这么多的优点,是与它的独特形状和结构分不开的。它头项上像几把大刀似的螺旋桨,转起来好似一把伞,通常叫做旋翼。直升机就凭着这些大刀片在空中旋转来直升直降,悬停或作任意方向飞行。
它的尾巴也挺怪的,尾巴很长,还向上翘着,上面还挂个螺旋桨,它的作用和船上的舵一样,能使直升机向左或向右转弯。
直升机的肚子挺大,这是为了在它的肚子里装载坦克、大炮等大型武器。它的肚子下面还装有起落用的橡胶轮子。
现在一些新式武装直升机,其外形愈来愈和普通飞机相近了,机身呈流线型,而且在机身两侧装有小翅膀。这样,既可使升力增加,又能用来悬挂鱼雷和导弹等武器弹药。有的直升机还将尾桨用一个圆环罩起来,隐藏在垂直尾翼内,当它在高空飞行时,人们很难区别它是直升机还是普通飞机。
目前,电脑、自动驾驶仪和雷达导航仪等先进设备都已登上直升机了。这样,飞行员的操作就更灵活方便了。
未来的直升机将主要由“电脑”操纵飞行,甚至还可按照要求自动进行攻击作战。
直升机由几部分组成?
直升机主要由机体和升力(含旋翼和尾桨)、动力、传动三大系统以及机载飞行设备等组成。旋翼一般由涡轮轴发动机或活塞式发动机通过由传动轴及减速器等组成的机械传动系统来驱动,也可由桨尖喷气产生的反作用力来驱动。当前实际应用的是机械驱动式的单旋翼直升机及双旋翼直升机,其中又以单旋翼直升机数量最多。
直升机的最大速度可达300千米/小时以上,俯冲极限速度近400千米/小时,使用升限可达6000米(世界纪录为12450米),一般航程可达600~800千米左右。携带机内、外副油箱转场航程可达2000千米以上。
根据不同的需要直升机有不同的起飞重量。当前世界上投入使用的重型直升机最大的是俄罗斯的米-26(最大起飞重量达56吨,有效载荷20吨)。
直升机的突出特点是可以做低空(离地面数米)、低速(从悬停开始)和机头方向不变的机动飞行,特别是可在小面积场地垂直起降。由于这些特点使其具有广阔的用途及发展前景。
在军用方面已广泛应用于对地攻击、机降登陆、武器运送、后勤支援、战场救护、侦察巡逻、指挥控制、通信联络、反潜扫雷、电子对抗等。在民用方面应用于短途运输、医疗救护、救灾救生、紧急营救、吊装设备、地质勘探、护林灭火、空中摄影等。海上油井与基地间的人员及物资运输是民用的一个重要方面。
当前直升机相对飞机而言,振动和噪声水平较高、维护检修工作量较大、使用成本较高,速度较低,航程较短。直升机今后的发展方向就是在这些方面加以改进。现代直升机
20世纪90年代是直升机发展的第四阶段,出现了目视、声学、红外及雷达综合隐身设计的武装侦察直升机。典型机种有:美国的RAH-66和S-92,国际合作的“虎”、NH90和EH101等,称为第四代直升机。
这个阶段的直升机具有以下特点:采用第3代涡轴发动机,这种发动机虽然仍采用自由涡轴结构,但采用了先进的发动机全权数字控制系统及自动监控系统,并与机载计算机管理系统集成在一起,有了显著的技术进步和综合特性。
第三代涡轴发动机的耗油率仅为0.28千克/千瓦小时,低于活塞式发动机的耗油率。其代表性的发动机有T800、RTM322和RTM390。桨叶采用碳纤维、凯芙拉等高级复合材料制成,桨叶寿命达到无限。新型桨尖形状繁多,较突出的有抛物线后掠形和先前掠再后掠的BERP桨尖。
这些新桨尖的共同特点是可以减弱桨尖的压缩性效应,改善桨叶的气动载荷分布,降低旋翼的振动和噪声,提高旋翼的气动效率。球柔性和无轴承桨毂获得了广泛应用,桨毂壳体及桨叶的连接件采用复合材料,使结构更为紧凑,重量大为降低,阻力大大减小。
旋翼升阻比达到10.5,旋翼效率为0.8。这个阶段应用了无尾桨反扭矩系统,其优点是具有良好的操纵响应特性、振动小、噪声低,不需要尾传动轴和尾减速,使零部件数量大大减小,因而提高了可维护性。
复合材料在直升机上获得了前所未有的广泛应用。直升机开始采用复合材料主结构,复合材料的应用比例大幅度上升,通常占机体结构重量的30~50%。这一时期的民用型直升机的空重/总重比约为0.37。高度集成化的电子设备。计算机技术、信息技术及智能技术在直升机上获得应用,直升机电子设备朝着高度集成化方向发展。
这一时期的直升机,采用了先进的增稳增控装置,用电传、光传操纵取代了常规的操纵系统,采用先进的捷联惯导、卫星导航设备及组合导航技术,先进的通讯、识别及信息传输设备,先进的目标识别、瞄准、武器发射等火控设备及先进的电子对抗设备,采用了总线信息传输与数据融合技术,并正向传感器融合方向发展。机上的电子、火控及飞行控制系统等通过多余度数字数据总线交连,实现了信息共享。
采用了多功能集成显示技术,用少量多功能显示器代替大量的单个仪表,通过键盘控制显示直升机的飞行信息,利用中央计算机对通讯、导航、飞行控制、敌我识别、电子对抗、系统监视、武器火控的信息进行集成处理从而进行集成控制。
采用这类先进的集成电子设备,大大简化了直升机座舱布局和仪表板布置,系统部件得到简化,重量大大减轻。更主要的是极大地减轻了飞行员工作负担,改善了直升机的飞机品质和使用性能。直升机的全机升阻比达到6.6,振动水平降到0.05g,噪声水平小于90分贝,最大速度可达到350千米/小时。
武装直升机的结构是什么样的?
武装直升机的头顶上像几把大刀似的螺旋桨,转起来好似一把伞,通常叫做旋翼。直升机就凭着这些大刀片在空中旋转来直升直降,悬停或作任意方向飞行。旋翼在空中快速旋转以后,就会产生向上的升力。如果飞行员加大发动机油门,旋翼就转得快些,升力就大。若升力大于直升机的重量,飞机就能垂直起飞;若旋翼转得慢些,当升力和飞机的重量近似相等时,直升机就停在空中不动;如果旋翼转动得再慢些,使产生的升力小于飞机的重量,直升机就会凭着自己的重量徐徐下降。使人感兴趣的是,旋翼还能前、后、左、右倾斜。如果向前倾斜,它就会产生一个推着飞机向前飞行的力,于是直升机就向前飞行了。同样道理,旋翼向后、向左、向右倾斜,直升机就能跟着向后、左、右方飞行,操作也很灵便。直升机的尾巴也挺怪的,尾巴长不说,还向上翘着,上面还挂了台“电扇”。这“电扇”实际上是个螺旋桨,它的转轴与地面是平行的,一般称作“尾桨”。它的作用和船上的舵一样,能使直升机向左或向右转弯。一般飞机在空中转个弯可不容易,需要绕一个大圈子才能转得过来。而直升机有了这个尾桨,转弯就省事多了。由于直升机的旋翼很大,为了防止它与尾桨相碰,就将尾桨向后移,于是直升机就出现了个长长的蜻蜓尾巴。直升机的肚子挺大,样子像个大蝈蝈。这是为了在它的肚子里装载坦克、大炮等大型武器。它的肚子下面还装有起落用的橡胶轮子。现在一些新式武装直升机,其外形愈来愈和普通飞机相近了,不但机身和现代的战斗机一样呈流线型,以减少飞机飞行时的空气阻力,而且在机身两侧装有小翅膀。这样,既可使升力增加,又能用来悬挂鱼雷和导弹等武器弹药。有的直升机还将尾桨用一个圆环罩起来,隐藏在垂直尾翼内,当它在高空飞行时,人们很难区别它是直升机还是普通飞机。
关于《直升飞机内部结构图》的介绍到此就结束了。